
k-means++: A Survey

Ryan Anselm, Edward Ri, Sam Wang

May 15, 2023

1 Introduction

In the standard formulation of the k-means clustering problem, one is given a number of clusters
k and a set X of n data points in Rd. The goal is to pick a set of cluster centers C that minimizes
the cost function

ϕX(C) :=
∑
x∈X

min
c∈C
||x− c||2 (1)

such that |C| = k. Denote ϕOPT to be the cost of an optimal clustering. Lloyd’s algorithm [Llo82]
(given in Algorithm 1) is a standard technique for obtaining locally optimal solutions to the k-
means clustering problem. However, Lloyd’s algorithm is known to be sensitive to initialization and

can converge to arbitrarily bad clusterings (meaning the cost ratio ϕX(C)
ϕOPT

is potentially unbounded)

when initial points are selected randomly (even under repeated random initializations).

Algorithm 1 Lloyd’s algorithm for k-means clustering

Input: A set X ⊂ Rd of n points, an integer k > 0 of the number of clusters.
Output: A set of clusters and cluster centers (Aj , cj) for j ∈ [k].

1: Initialize centers c1, . . . , ck ∈ Rd by picking k points uniformly at random from X
2: while c1, . . . , ck have not yet converged do
3: for each j: Aj ← {x ∈ X whose closest center is cj}
4: for each j: cj ← 1

|Aj |
∑

x∈Aj
x

5: return {(Aj , cj) : j ∈ [k]}

The k-means++ initialization algorithm (given in Algorithm 2) was proposed by [AV06] as a replace-
ment to step 1 of Lloyd’s algorithm that picks the initial seeding according to a careful randomized
procedure so as to obtain an expected O(log k)-approximation of the optimal clustering, meaning
ϕX(C)
ϕOPT

= O(log k). k-means++ works by choosing the first cluster center uniformly at random and
then picking all successive initial cluster centers with probabilities weighted proportionally to the
distance squared from the closest cluster center already chosen so far.

k-means++ has inspired much follow-up work that attempts to better understand it and improve
upon it, both theoretically and empirically. In this survey, we aim to give an overview of k-
means++ as well as some of the most significant follow-up work related to it. Section 2 of this
survey gives an overview of the properties of the standard k-means++ algorithm including proofs
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Algorithm 2 k-means++ initialization

Input: A set X ⊂ Rd of n points, an integer k > 0 of the number of clusters.
Output: A set of initial cluster centers C such that |C| = k.

1: C ← sample a point uniformly at random from X
2: while |C| ≤ k do

3: Sample x ∈ X with probability D2(x,C)
ϕX(C)

4: C ← C ∪ {x}
5: return C

of its theoretical guarantees and negative results related to it. Section 3 covers extensions of
the k-means++ algorithm in a few different directions that improve upon some of the original’s
shortcomings.

2 Properties of the k-means++ algorithm

2.1 Performance guarantees of k-means++

While Lloyd’s algorithm is simple to understand and requires very few iterations to converge in
practice, one major pitfall is that not only is the final result is highly sensitive to initialization but
the cost is unbounded from above. The motivation for the k-means++ algorithm is to resolve these
issues, and the original paper proposes an upper bound on the expectation of the cost.

Theorem 1. Let COPT be the optimal clustering and C be the cluster centers returned by the
k-means++ algorithm. Then,

E[ϕX(C)] ≤ 8(ln k + 2)ϕX(COPT ). (2)

Definition 1. The cost induced on a subset S ⊆ X by a cluster center c is ϕS({c}) :=
∑

x∈S ||x−
c||2.

Let AOPT = {A1, . . . , Ak} be the set of clusters induced by the optimal centers C. It can be “easily”
shown that choosing a uniformly random point from cluster A ∈ AOPT as a cluster center induces
a cost over A which is on expectation 2 times the cost induced by the optimal cluster center µA

over A, where µA := 1
|A|
∑

x∈A x. In essence, the proof of Theorem 1 boils down to showing that

k-means++ is likely to choose a point from each of the optimal clusters, and applies the following
lemma to all partitions to achieve the theorem result.

Lemma 1. For any cluster A in AOPT , the cost induced on A by choosing a uniformly random
point a ∈ A as the cluster center will satisfy:

E
a∈A

[ϕA({a})] = 2ϕA({µA}). (3)
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Proof Sketch. Consider a set of points A. The optimal cluster center for the set of points is
µA = 1

|A|
∑

x∈A x. Notice that

E
a∈A

[ϕA({a})] =
1

|A|
∑
x∈A

(∑
a∈A

∥a− x∥2
)

=
1

|A|
∑
x∈A

(∑
a∈A

∥a− µA∥2 + |A| · ∥x− µA∥2
)

=
2

|A|
∑
x∈A

(∑
a∈A

∥a− µA∥2
)

= 2ϕA({µA}).

The messy algebraic details of the second line are omitted but follow from the relationship between
the distance of points to the mean and mutual distances between points. □

Notice that the above lemma implies that the first cluster center we choose will always abide by the
given results, as we are guaranteed to be choosing a cluster center from a cluster in AOPT without
overlap.

Now, we show that as long as we choose centers from each cluster in AOPT , adding another point
to C with the procedure used in k-means++ (known as D2 weighting) will result in a similar bound
for the total cost.

Lemma 2. For an arbitrary cluster A ∈ AOPT where a cluster center from A has not been sampled
yet, adding a random point x ∈ A to C chosen with weighting proportional to D(x, C)2 will satisfy:

E
x∼D(C)2

[ϕA({x})|x ∈ A] ≤ 8 · ϕA({µA}) (4)

where the distance to nearest cluster center squared weighted probability distribution is denoted as
D(C)2.

Proof. First, the probability that we choose some fixed point x ∈ A as our new center given that

we are choosing some point from A can be written as D(x,C)2∑
a∈A D(a,C)2 by definition of D2 sampling.

Notice that after choosing x as a new cluster center, the cost contributed by each point a ∈ A will
be equal to min(D(a, C)2, ∥a− x∥2), as either a’s new closest center will be x or will remain as an
old cluster center in C.

Thus, the contribution to the total expected cost by A can be written as:

E
x∼D(C)2

[ϕA({x}) | x ∈ A] =
∑
x∈A

D(x, C)2∑
a∈AD(a, C)2

∑
a∈A

min(D(a, C)2, ∥a− x∥2). (5)

Notice that D(x, C) ≤ D(a, C)+∥a−x∥ for all a, x by triangle inequality and D(x, C)2 ≤ 2D(a, C)2+
2∥a− x∥2 because (A+ B)2 ≤ 2(A2 + B2). Applying these inequalities to the above equation, we
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get:

E
x∼D(C)2

[ϕA({x})|x ∈ A] ≤
2

|A|
∑
x∈A

∑
a∈AD(a, C)2∑
a∈AD(a, C)2

∑
a∈A

min(D(a, C), ∥a− x∥)2+

∑
a∈A

∑
a∈A ∥a− x∥2∑
a∈AD(a, C)2

∑
a∈A

min(D(a, C), ∥a− x∥)2.

Now, notice that min(D(a, C), ∥a − x∥)2 ≤ D(a, C)2 and min(D(a, C), ∥a − x∥)2 ≤ ∥a − x∥2 hold
true, applying lemma 1 in the above equation and the above expressions gets us that

E
x∼D(C)2

[ϕA({x})] ≤
4

|A|
·
∑
x∈A

∑
a∈A

∥a− x∥2

= 8
∑
a∈A

∥a− µA∥2

= 8 · ϕA({µA}).

As mentioned, note that while the above lemma shows a bound on the expected cost for sequen-
tially choosing cluster centers, the underlying assumption is prohibitive in that it requires the D2

weighting procedure to always sample from a new partition in A. Here, we will show that choosing
u random centers with D2 weighting will result in an upper bound resembling the result of our
original theorem.

Lemma 3. Let A be some clustering with centers C. Pick u > 0 to be the number of uncovered
cells from AOPT , and Xu be the corresponding points from these cells. Let C′ be C after adding
t ≤ u random centers to C with D2 weighting. Then,

E[ϕX(C′)] ≤ (1 +Ht)
(
ϕX\Xu

(C) + 8ϕOPT (Xu)
)
+
u− t
u
· ϕXu

(C), (6)

where Ht = 1 + 1
2 + ...+ 1

t denotes the harmonic sum.

The lemma can be proved by induction, showing that if the result holds for (t−1, u) and (t−1, u−1),
then the results holds for (t, u). The specific details of the proof are omitted for brevity.

The result of the main theorem can be exactly derivied by setting t = u = k− 1 and using the fact
that Ht ≤ 1 + ln k.

Remark 1. There are a number of follow-up works that sharpen the results provided by [AV06].
[MRS20] improves the bound in the main theorem to E[ϕX(C)] ≤ 5(ln k + 2)ϕX(COPT ). [Wei16]
generalizes the result by considering the family of Dl weighting, choosing βk clusters where β ≥ 1,
and metric spaces.

Remark 2. [AV06] also show a matching lower bound of Ω(log k) for a specific arrangement of
points and proves a lower bound on the cost optimality in expectation. However, while the original
paper shows the existence of a construction where the bound is asymptotically tight, an open
problem remained on the average case performance, i.e. whether k-means++ yields a constant
factor approximation with constant probability.
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2.2 A bad instance of k-means++

[BR13] attempts to follow up on this question by showing that k-means++ achieves an approxima-
tion ratio no better than ( 23 − ϵ) · log k on a specific bad construction for k-means++.

Construction. Define ∆ > 0 as some appropriate number, dependent on k and some δ ∈ (0, 2/3).
We consider placing the cluster centers first and putting the data points in a way such that k-
means++ will provide a suboptimal answer.

Concretely, place k centers c1, . . . , ck such that they are
√
∆2 − k−1

k distance from each other in

some high-dimensional space.1 For each center ci, we construct a (k − 1)-simplex with the center

as ci and side length 1, and use the collection of vertices x
(i)
1 , . . . , x

(i)
k over all centers as the data

points. Moreover, we assume we can place the simplices of all centers such that they are residing
in orthogonal subspaces to each other.

By this construction, we can see that:

∥x(i)j − ci∥
2 =

k − 1

2k
,

∥x(i)j − x
(i)
j′ ∥

2 = 1,

∥x(i)j − x
(i′)
j′ ∥

2 = ∆2.

Similar to the proof trajectory of [AV06], [BR13] consider the setup of sequentially choosing the
next cluster center.

They model the procedure as a Markov chain, where each state denotes the coverage of each
partition (cluster) in COPT:

where ps = 1
1+ s−1

(k−s)·∆2

and qs = 1 − ps. Notice that depending on the value of ∆ (the distance

between points from different cluster centers in the original construction), the difficulty of the
problem changes. If ∆ is too large, the probability that not all cells are covered becomes small as
there is a high chance to jump to a different simplex using D2 weighting if all simplices are mutually
far away from each other. If ∆ is too small, then the problem becomes intractable as recovering
the original cluster centers becomes difficult.

3 Extensions of k-means++

The basic k-means++ algorithm encounters three limitations that are addressed by extensions to
the original algorithm.

1In the original paper, constraints on the dimension are not mentioned; we will assume we have sufficient dimen-
sions (> k) such that there is no issue in arranging points in the way described in the paper.
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1. k-means++ is highly sensitive to outliers in the data. Recall that the probability of choosing
any point to be a center is proportional to its distance from the nearest already chosen center
squared, so outlier points are much more likely to be selected. In the extreme case, if we have
99% of points extremely close together with 1% of points far away, then most of the chosen
centers will fall among the outliers.

2. k-means++ is not easily scalable for use on massive datasets because it is inherently sequential
and cannot be run in a parallel setting. Specifically, k-means++ must make O(k) sequential
passes over the data because the weighted probability distribution for picking the ith center
is only determined after the first i− 1 centers have already been chosen.

3. The basic k-means++ algorithm only guarantees a O(log k) approximation factor in expec-
tation. Ideally, we would prefer an algorithm that is a constant-factor approximation of the
optimal result.

In this section, we discuss a few variants of the k-means++ procedure to overcome these short-
comings. In particular, robust k-means++ chooses centers using a combination of D2 and random
sampling to reduce the influence of outliers, k-means∥ over-samples centers to achieve results on par
with k-means++ with a procedure that can be performed in a parallel setting, K-MC2 speeds up
the D2 weighted sampling step by approximating it with a Markov Chain Monte Carlo (MCMC)
sampling scheme, and local search iteratively samples new points and replaces existing points if the
new one yields a lower cost function.

3.1 Robust k-means++

The k-means objective ϕX(C) is inherently sensitive to outliers. [DKP20] introduced the robust
k-means objective ρX(C, β)2 which discards a fraction β of outlier points:

ρX(C, β) = min
Y⊂X,|Y |=(1−β)|X|

∑
x∈X

min
c∈C
||x− c||2. (7)

Let COPT = argminC ρX(C, β). Using a combination of D2 and random sampling, the robust k-
means++ algorithm returns a set S of O(k/δ) centers such that ρX(S, β + δ) is a constant factor
approximation to ρX(COPT , β). Whereas D2 sampling is more likely to choose outlier points,
uniform sampling is likely to miss small clusters, so a combination of approaches allows the best of
both worlds.

The error parameter δ should be chosen such that each outlier point is likely to get assigned its own
cluster. To output only k centers, we consider all

(
O(kn/z)

k

)
ways of choosing k centers from the

outputted points and return the optimal one, which runs in time linear in n and d but exponential
in k.

Theorem 2. Let S ⊂ X be the subset of centers chosen by the robust k-means++ algorithm. Then,
with constant probability, S contains k centers CS such that ρX(CS , β + δ) ≤ 5ρX(COPT , β).

Proof. Let A1, . . . , Ak be the ideal clusters for the robust objective (so
∑k

j=1 |Aj | = (1− β)n) with

2This notation differs from the one used in the paper for the sake of clarity.
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Algorithm 3 The robust k-means++ algorithm

Input: A set X ⊂ Rd of n points, an integer k > 0 of the number of clusters, an outlier parameter
β ∈ [0, 1], and an error parameter δ ∈ [0, 1].
Output: A set S ⊂ X of size O(k/δ).

1: Initialize S0 ← ∅.
2: for i = 1, . . . , t = O(k) do
3: Sample m = O(1/δ) points x1, . . . , xm each with probability

ϕ{x}(Si−1)

2ϕX(Si−1)
+

1

2n

4: Si ← Si−1 ∪ {x1, . . . , xm}.
5: return St

centers µ1, . . . , µk. At the ith iteration of the loop, define

Goodi = {Aj : ϕAj
(Si−1) ≤ 5ϕAj

({µj})}
Badi = {A1, . . . , Ak} \Goodi.

Goodi represents the set of optimal clusters that are approximated within a factor of 5 by Si−1,
and Badi is the set of clusters that remain to be approximated well. At each iteration i, there are
two possibilities. If the number of points in bad clusters

∑
j:Aj∈Badi

|Aj | is less than or equal to

δn, then we get a 5-approximation after discarding (β+ δ)n outlier points from the dataset X, and
we are done (recall that A1 ∪ . . .∪Ak already have a β fraction of points removed). Otherwise, the
total number of bad clusters decreases with at least a constant probability, which is the statement
of lemma 4:

Lemma 4. Suppose
∑

j:Aj∈Badi
|Aj | ≥ δn, then after each iteration, Pr[|Badi+1| < |Badi|] ≥ θ for

some θ > 0.

Proof. Let Bj ⊆ Aj be the set of points in Aj within
√
2 times the root-mean-square radius of Aj :

rj =
√
ϕAj

({µj})/|Aj | Bj = {x ∈ Aj : ||x− µj || ≤
√
2rj}.

First, note that x is a good cluster center if it is within 2rj of µj :

ϕAj (Si ∪ {x}) ≤ ϕAj ({x})
= ϕAj

({µj}) + |Aj | ||x− µj ||2

≤ ϕAj
({µj}) + |Aj | 4r2j

≤ 5ϕAj
({µj}).

Therefore, if we have a bad cluster Aj in the ith iteration and we choose some x ∈ Bj to include in
Si+1, then Aj ∈ Goodi+1. What remains is to lower bound the probability that the chosen point
falls in Bj for some bad cluster Aj . Since at least δn points belong to bad clusters,

Pr[x is in a bad cluster] =

∑
j:Aj∈Badi

ϕAj
(Si)

2ϕX(Si)
+

∑
j:Aj∈Badi

|Aj |
2n

≥
∑

j:Aj∈Badi
|Aj |

2n
≥ δ

2
.
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For a fixed bad cluster Aj ,

Pr[x ∈ Bj | x ∈ Aj ] =

(
ϕBj

(Si)

2ϕX(Si)
+
|Bj |
2n

)/(
ϕAj

(Si)

2ϕX(Si)
+
|Aj |
2n

)
≥ min

{
ϕBj

(Si)

ϕAj
(Si)

,
|Bj |
|Aj |

}
.

Observe that |Bj |/|Aj | must be at least 1/2, or else the contribution of Aj \ Bj to the cost would
be too large. Let p be the closest point in Si to µj and d = ||p− µj ||. Then,

ϕBj (Si) =
∑
x∈Bj

min
s∈Si

||x− s||2

≥
∑
x∈Bj

(||p− µj || − ||µj − x||)2

≥ |Bj |(d−
√
2rj)

2 ≥ |Aj |
2

(d−
√
2rj)

2.

On the other hand,

ϕAj (Si) ≤ ϕAj ({p}) = ϕAj ({µj}) + |Aj | ||p− µj ||2 ≤ |Aj |(r2j + d2) ≤ |Aj |(rj + d)2.

Putting these two expressions together, we get that

ϕBj
(Si)

ϕAj (Si)
≥ (d−

√
2rj)

2

2(rj + d)2
≥ (2−

√
2)2

10
≥ 1

30
.

This result relies on the fact that d > 2rj since Aj ∈ Badi. Finally, the probability of choosing
some x such that x belongs to Bj of some bad cluster Aj is at least (δ/2)(1/30) which is δ/60,
so by sampling O(1/δ) points in each iteration, |Badi| decreases between iterations with at least a
constant probability.

Definition 2. A sequence of random variables J0, J1, . . . , Jt is called a super-martingale if E[Ji+1 |
J0, . . . , Ji] ≤ Ji for all i ≥ 1.

The Azuma-Hoeffding inequality states that if J0, J1, . . . , Jt is a super-martingale with Ji+1−Ji ≤ 1,

then Pr[Jt ≥ J0 + ϵ] ≤ e−ϵ2/2t. Define an indicator variable Xi such that

Xi =

{
1 if |Badi+1| = |Badi|
0 otherwise

,

and define

Ji =

i∑
j=1

(Xj − (1− θ)) = i(1− θ) +
i∑

j=1

Xj .

Clearly, E[Ji+1 | J0, . . . , Ji] ≤ Ji−1 and Ji+1 − Ji ≤ 1. Letting t = (k +
√
k)/θ and ϵ =

√
k, and

applying the Azuma-Hoeffding inequality, we get that

Pr[no bad clusters after (k +
√
k)/θ iterations] = Pr

(k+
√
k)/θ∑

i=1

(1−Xi) ≥ k

 ≥ 1− e−θ/4.

Therefore, after O(k) iterations of the loop, the robust k-means++ algorithm terminates with a set
S containing k centers that approximate COPT with probability at least 1− e−θ/4, as desired.

8



The k-means++ algorithm runs in O(ndk) time and outputs O(k/δ) centers. To narrow down the
number of centers to k, we require an additional O((ndk) · (k/δ)k) time to find the optimal subset.

Remark 3. With O(log 1/η) runs of the algorithm, we can boost the success probability to 1− η.

Remark 4. The given algorithm applies equal weighting to D2 and uniform sampling, but this not
be the case. We can apply an (α, 1−α) weighting to favor one type of sampling based on the nature
of the dataset.

3.2 Scaling k-means++ for massive data

While scaling and parallelizing Lloyd’s algorithm for k-means clustering to massive data is relatively
straightforward, the k-means++ initialization step is inherently sequential in nature and cannot
apparently be sped up by parallelism, making it more of a time bottleneck in practice. This section
covers extensions to k-means++ that try to make it more practical for use on massive datasets.
We examine k-means∥, which reduces the number of sequential passes required with the tradeoff of
doing extra within each pass, and K-MC2, which improves the time complexity of each sequential
pass through a Markov Chain Monte Carlo-based approximate sampling scheme.

3.2.1 k-means∥

[BMV+12] introduced k-means∥ (given in Algorithm 4), a parallelizable version of k-means++
that significantly reduces the number of sequential passes required in practice to obtain a good
initialization. The key modification is that instead of sampling a single point in each pass for O(k)
passes, k-means∥ samples O(k) points in each pass for approximately O(log n) passes. At the end
it is left with O(k log n) points that are reclustered into k centers using a clustering algorithm such
as k-means++ followed by Lloyd’s algorithm, which then become the initial points for the main
run of Lloyd’s algorithm. Like k-means++, this approach has provable approximation guarantees,
but additionally it is parallelizable and applicable in practice to massive datasets due to requiring
significantly fewer sequential operations.

Algorithm 4 The k-means∥ initialization algorithm

Input: A set X ⊂ Rd of n points, an integer k > 0 of the number of clusters, an oversampling
factor l = Θ(k) on the order of k.
Output: A set C of k cluster centers.

1: C ← sample a point uniformly at random from X
2: ψ ← ϕX(C), the cost of the initial cluster
3: for O(logψ) times do

4: C′ ← sample each point x ∈ X independently with probability px = l·D2(x,C)
ϕX(C)

5: C ← C ∪ C′
6: For x ∈ C, set wx to be the number of points in X closer to x than any other point in C
7: C ← cluster centers of C using some clustering algorithm
8: return C

Lemma 5. The expected number of points chosen per iteration of steps 3-5 is l, and on expectation
there will be l · logψ = O(k log n) points in C at the start of step 6 of Algorithm 4.
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To see this, observe that
∑

x∈X px = l and ψ ≤ n2∆2 where ∆ is the maximum interpoint distance
in X. Then it follows from this and the fact that l = Θ(k).

Theorem 3. After O(logψ) passes of steps 3-5 in algorithm 4, there will be a set of (on expectation)
O(k log n) points that gives on expectation a constant factor approximation of the optimal k-means
clustering cost.

Proof Sketch. Consider a cluster A present in the optimum k-means solution. Denote ϕA(C) to be
the cost over points in A induced by a set of cluster centers C. Let T = |A| and sort points in A
in increasing distance from the centroid of A, denoted a1, . . . , aT . Let qt be the probability at is
chosen out of points in A first and qT+1 be the probability no point is sampled from A during an

iteration of k-means∥. Recall that in k-means∥, pt = l·D2(at,C)
ϕX(C) . Observe that qt = pt

∏t−1
j=1(1− pj)

and qT+1 = 1 −
∑T

t=1 qt. Define at as the first point in A sampled as a new center and define
st = min{ϕA,

∑
a∈A ||a− at||2}. We have for a new set of points selected C′ that

E[ϕA(C ∪ C′)] ≤
T∑

t=1

qtst + qT+1ϕA(C) (8)

Consider a simplifying mean-field case where all points in A are far from the current clustering,
and that all d(at, C) are equal, from which it follows that p := p1 = p2 = · · · = pT .

3 Under these
conditions we have that qt = p(1 − p)t−1, and that {qt}1≤t≤T is a monotone decreasing sequence.
We now define s′t :=

∑
a∈A ||a−at||2. By the ordering on at’s, {s′t}1≤t≤T is an increasing sequence.

Then, we observe that
T∑

t=1

qtst ≤
T∑

t=1

qts
′
t ≤

1

T

(
T∑

t=1

qt ·
T∑

t=1

s′t

)
using Chebyshev’s sum inequality [HLP88]. Finally, note that 1

T

∑T
t=1 s

′
t = 2ϕ(A,µA). Then, by

substituting into equation 8 we get

E[ϕA(C ∪ C ′)] ≤ (1− qT+1)2ϕ(A,µA) + qT+1ϕA(C). (9)

This result implies that in each iteration, for each optimal cluster A, a fraction of the current
cost ϕA(C) is removed and replaced with a constant factor times ϕ(A,µA). Repeating this process
O(logψ) many times will therefore lower the cost on each of the optimal clusters to a constant factor
approximation of each optimal cluster, and together they yield a constant factor approximation of
the total cost using l logψ points on expectation.

Corollary 1. If an α-approximation clustering algorithm is used to recluster the O(k log n) points
in Step 7, then k-means∥ obtains a solution that is an O(α)-approximation to k-means.

Note that k-means++ is an α-approximation algorithm on expectation for α = 5(ln k + 2). This
corollary implies that if we use k-means++ to cluster the reduced set of O(k log n) points in C into
k clusters, then k-means∥ will be an O(log k)-approximation algorithm to the full k-means problem.

3For an argument that works for the general case when pt’s are not necessarily the same, see [BMV+12].
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Remark 5. While the overall time complexity of k-means∥ is higher than k-means++, its capacity for
being parallelized results in it being more useful in practice for massive datasets. The set produced
at the end of the iterations contains only l logψ = O(k log n) points on expectation rather than
O(n), which makes it practically feasible for the last reclustering stage to be done sequentially using
standard k-means++, even for large n.

Remark 6. Interestingly, k-means∥ also outperforms k-means++ empirically in the single-machine
setting despite having weaker theoretical guarantees. [MRS20] gives an empirical demonstration to
suggest that this occurs because k-means∥ samples O(k log n) ≥ k centers in its first stage and then
reclusters them back down to k later. They show that the performance of k-means∥ where only k
points are selected in the first stage of k-means∥ is nearly identical to k-means++. They furthermore
compare k-means∥ to Bi-Criteria k-means++ with Pruning, which samples k + ∆ centers before
reducing down to k and finds that it is also nearly identical in performance to k-means∥.

3.2.2 K-MC2 - Sublinear approximate k-means++

[BLHK16a] addressed the issue of k-means++’s lack of scalability from another angle by proposing
a seeding algorithm called K-MC2 that approximates the D2-sampling in k-means++ with an
approach based on Markov Chain Monte Carlo (MCMC) sampling. Under assumptions that the
data comes i.i.d. from a distribution that has (1) exponential tails and (2) is approximately uniform
on a hypersphere, their algorithm retains the full original approximation guarantees while gaining a
sublinear in n time complexity. A single pass of approximate D2-sampling works by first sampling
a point x0 uniformly at random from X, then building a Markov chain of length m by iteratively
sampling a uniformly random candidate yj and accepting it with probability

π = min

(
1,

D2(yj , C)
D2(xj−1, C)

)
,

with probability π setting xj to yj and with probability 1−π setting xj to xj−1. The point that gets
sampled at the end will be xm. The speedup in this process is found in only having to compute the
distance squared from C for m points per pass, rather than for the entire dataset of n points. This
approximate D2-sampling scheme can directly substitute the true D2-sampling in the k-means++
algorithm. It can be shown that when the probability measures of the MCMC-based approximate
scheme and k-means++ are ‘close’ (under a metric known as total variation distance) we retain the
same theoretical guarantees as k-means++ with high probability.

Theorem 4 (Informal). The probability distributions of the MCMC sampling scheme and true
k-means++ will be ‘close’ to each other for a Markov chain of length only sublinear in n.4

Corollary 2. Using the MCMC-based approximate-D2 sampling scheme, we can obtain O(log k)-
competitive solutions with total time complexity O(k3d log2 n log k) for initialization (compare this
to O(nkd) for vanilla k-means++).

Remark 7. [BLHK16b] (by the same authors) improves upon this result by giving a modified
algorithm that does not require the assumptions on the data that K-MC2 requires in order to
achieve the same approximation guarantees as k-means++. We mention this result for the sake of
completeness but do not detail it further.

4For particulars of this theorem, see [BLHK16a].
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3.3 k-means++ with local search

To achieve a constant-factor approximation to the k-means problem, the idea is to improve the
k-means++ initialization by sampling additional points using the same D2 weighting. If we can
replace an existing center q ∈ C with the newly sampled point p and decrease the overall cost, then
we swap them out. If Z is the number of rounds of local search, then the total running time of the
initialization procedure is O(dnkZ).

Algorithm 5 k-means++ initialization with local search

1: C ← a set of k centers by k-means++ initialization
2: for t = 1, . . . , Z do

3: Sample p ∈ X with probability D2(x,C)
ϕX(C)

4: q = argminc∈C ϕX(C \ {c} ∪ {p})
5: if ϕX(C \ {c} ∪ {p}) < ϕX(C) then
6: C ← C \ {q} ∪ {p}
7: return C

[LS19] proved that O(k log log k) rounds of local search are sufficient to achieve a constant-factor
approximation. [CGPR20] improved upon the result to show that only O(k) rounds are sufficient.
Although both papers proved theoretical bounds with large hidden constants, only a small number
(≈ k) of iterations are needed to achieve good results in practice.

Theorem 5 ([LS19]). Let C be the result of k-means++ initialization with Z ≥ 100000k log log k
rounds of local search. Then, E[ϕX(C)] = O(ϕX(COPT )).

The key insight to Theorem 5 comes from the following lemma:

Lemma 6 ([LS19]). Let C be a set of centers with cost ϕX(C) > 500ϕX(COPT ), and let C′ be C
after one round of local search. Then, ϕX(C′) ≤ (1− 1

100k )ϕX(C) with probability at least 1
1000 .

Finally, we come to the O(k) rounds constant factor approximation.

Theorem 6 ([CGPR20]). Fix ϵ ∈ (0, 1] and require k = Ω(1/ϵ20). Let C be the result of k-
means++ initialization followed by Z ≥ ϵk rounds of local search. Then, ϕX(C) ≤ 1030/ϵ3 · ϕOPT

with probability at least 1− exp(−Ω(k0.1)).

Note that to get a constant factor approximation in close to k rounds, their result requires that k
must be extremely large.
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