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1 Introduction

Our project is thematically focused on understanding the nature of the relationship between (circuit)
complexity theory and ‘sharp threshold’ phenomena, a topic that naturally emerges in theoretical
computer science, statistical physics, social choice theory, statistics, and other areas. One of the
most compelling motivations for pursuing this line of work is to establish a dictionary between
theoretical computer science and other fields such as statistical physics, where ideas and results
from one field can be borrowed for application in the others. As a contemporary example of this,
[DRT18] proved new results for the random-cluster and Potts models from statistical physics while
making use of the OSSS inequality [ODo+05], which originated from the study of decision trees in
theoretical computer science.

More concretely, we focus on the recent result of [GMZ23], which establishes lower bounds on
the size/depth of boolean circuits that, in a certain approximate sense, compute functions which
exhibit a sharp threshold. This result establishes that phase transition-like sharp threshold behavior,
ubiquitous in physics and elsewhere, has rigorously provable computational hardness.

Our report is structured as follows: In section 2, we provide background information relevant
to the study of sharp thresholds and key prior results that constitute the foundation for [GMZ23].
Next, in section 3 we give an informal statement of the main result and demonstrate how it can be
used in several contexts. In section 4, we give the proof of the main result. Lastly, in section 5 we
discuss future lines of work.

2 Background

2.1 Preliminaries

Let a Boolean function f : {0, 1}n → {0, 1} be monotone if on all inputs, flipping any input bit
from 0 to 1 can never cause the corresponding output to flip from 1 to 0. Formally, f is monotone
if ∀x, y ∈ {0, 1}n : (∀i ∈ [n] : xi ≤ yi) =⇒ f(x) ≤ f(y). For a monotone Boolean function
f : {0, 1}n → {0, 1}, consider the probability that an input X ∈ {0, 1}n drawn from a p-biased
product distribution X ∼ Pp = Bern(p)⊗n satisfies f(X) = 1. Denote Ep[f ] ≡ EX∼Pp [f(X)] =
PrX∼Pp

[f(X) = 1] to be the probability that f is satisfied when drawing an input from Pp and the
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critical probability pc to be the probability such that Epc [f ] = 1/2. Note that gf : [0, 1] → [0, 1]
where gf (p) = Ep[f ] is a monotonically increasing real function.

A sharp threshold is a phenomenon where within a small window frame of increasing the
Bernoulli parameter p of the distribution Pp being sampled from, the probability Ep[f ] of a random
input to f having an output of 1 jumps rapidly from near 0 to near 1. A formal definition is given
below. Concretely we assume that ‘near 0’ means less than 0.01 and ‘near 1’ means greater than
0.99, though these numbers are arbitrary and for any ε ∈ (0, 1/2) we could use ε and 1− ε as the
respective cutoffs.

Definition 1 (Sharp Threshold). A monotone Boolean function f : {0, 1}n → {0, 1} has a ∆-sharp
threshold around pc if there exists p1, p2 where 0 < p1 < pc < p2 < 1 such that Ep1

[f ] < 0.01 and
Ep2

[f ] > 0.99 where p2−p1

min{pc,1−pc} < 1
∆ .

Define critical window width to be εn = p2 − p1. Note that the sharpness of the threshold is
inversely proportional to the smallest possible ratio between the width of the ‘critical window’
where Ep[f ] goes from near 0 to near 1 and the closeness of the critical point pc to 0 or 1. The
Bollobás-Thomason Theorem [BT87] states that for every monotone Boolean function f , εn =
p2−p1 = O(min{pc, 1−pc}), so we always have that p2−p1

min{pc,1−pc} = O(1). Colloquially, a threshold

is considered to be ‘sharp’ when p2−p1

min{pc,1−pc} = o(1) and otherwise it is considered to be a coarse

threshold.

Figure 1: Ep[f ] vs. p graph of some hypothetical function f exhibiting a threshold with the critical
probability pc, pε ≡ p1, and p1−ε ≡ p2 labeled.

As an example of a function that exhibits a sharp threshold, we will briefly look at the majority
function on n bits MAJn : {0, 1}n → {0, 1} which outputs 1 if and only if a majority of the n input
bits are 1. There is a critical point at pc = 0.5 for this function. This can be verified because for any
p < 0.5, as n → ∞ the probability of at least half of the inputs being 1 goes to 0, so Ep[MAJn] → 0,
and for any p > 0.5, as n → ∞ the probability of at least half of the inputs being 1 goes to 1, so

Ep[MAJn] → 1.
The sharpness of the threshold for MAJn can be derived from the central limit theorem, as

MAJn ≡ 1
[
1
n

∑n
i=1 xi ≥ 1/2

]
, so the output is dependent on the average of n i.i.d. Bernoulli
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random variables, which will approximate a Gaussian random variable as n gets large. The width
of the critical window depends on the value of p1 such that Ep1 [MAJn] = 0.01 and the value of
p2 such that Ep2

[MAJn] = 0.99 (in particular, how far are they from pc = 0.5). Observe that this
is entirely dependent on the standard deviation of the distribution, which for 1

n

∑n
i=1 xi scales as

Θ(1/
√
n). Therefore, we can infer that the critical window width is Θ(1/

√
n) for MAJn, so MAJn

has a Θ(
√
n)-sharp threshold.

Definition 2 (Computing a function on average around the critical window). Fix a family of
functions {fn}n∈N where fn : {0, 1}n → {0, 1}. A family of circuits {Cn}n∈N where Cn : {0, 1}n →
{0, 1} computes f on average around the critical window if for some constant ξ ∈ (0, 1/2), and
p1, p2 ∈ (0, 1), with Ep1

[f ] = ξ and Ep2
[f ] = 1 − ξ, it holds that for all ε > 0, there exists a

sufficiently large n such that

max{E
p1

[|Cn − f |], E
p2

[|Cn − f |]} ≤ ε

A function is computed on average around the critical window if a single circuit agrees with it
with high probability for at least two values of p around the critical window. We are concerned with
this specialized notion of average-case hardness because for several problems worst-case hardness
is known but nothing can be said about the conventional notion of average-case hardness. For
example, the k-clique problem asks to decide whether a given input graph with n nodes has a
k-clique in it. However, if k = Θ(n), then the vast majority of input graphs with n nodes will not
have a k-clique, so the problem is trivial to compute on average given a uniform distribution over
inputs. However, computing k-clique in the worst-case instance is known to be NP-hard. Average-
case hardness around the critical window strikes a balance in that it is a stronger requirement than
worst-case hardness but still holds for many problems of interest where conventional average-case
hardness trivially does not hold.

Lastly, we give the definition of AC0 circuits for completeness because of their relevance to the
circuit lower bounds that we will be able to prove.

Definition 3 (AC0 circuit). A Boolean circuit using unbounded fan-in AND, OR, and NOT gates
with n inputs is an AC0 circuit if it is of poly(n) size and O(1) depth.

2.2 Friedgut’s Theorem

Next, we turn to discuss some of the significant prior work on sharp thresholds on graph properties.
In his survey on sharp thresholds [Fri05], Friedgut gives an overview of the work done concerning
sharp thresholds up to that point, but primarily focusing on random graphs. He first provides
examples of sharp thresholds of random graphs, elaborated on later, provides theorems from [FB99],
and uses them to provide theorems on coarse thresholds and their relationship with random graphs.

Friedgut provides his main theorem, stated below.

Theorem 4 ([FB99] Theorem 1.1). There exists a function k(ϵ, c) such that for all c > 0, any n,

and any monotone symmetric family of graphs A on n vertices such that p · dµp(A)
dp ≤ c, for every

ϵ > 0, there exists a monotone symmetric family B such that ∥B∥ ≤ k(ϵ, c) and µp(A△B) ≤ ϵ.
Furthermore, the minimal graphs in B are all balanced.

He uses an equivalent definition of sharpness, where µp(A) ≡ Ep[f ], but A is a product space.
Summarized by Friedgut in [Fri05], this theorem says
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“All monotone graph properties with a coarse thresholds (denoted by A in the theorem) may be
approximated by a local property (denoted by B).”

In addition to the main theorem, he also conjectured the following, proven in the appendix by
Bourgain.

Theorem 5 ([FB99] Theorem 2.4, due to Bourgain). Let f : {0, 1}n→{0, 1} be the characteristic
function of A, a monotone subset of {0, 1}n. Let p = pc(A). For τ > 0, let

Ωr = {S : f̂(S)2 < τp|S|}.

Let pc→0, r→0, and n→∞. Then, if pc · dµ(A)/dp|p=pc
< c,∑

S∈Ωr

f̂2(S) = o(1).

This conjecture is summarized as

Properties with sharp thresholds cannot be mostly supported on low-degree Fourier terms,
provided the critical point is asymptotically close to 0.

A coarse threshold is the opposite of a sharp threshold, that is, one where the probability is bounded
away from 0 and 1 for a non-negligible (Θ(1) width) range of p values.

Theorem 6 ([Fri05] Theorem 2.4). Let A be a graph property with a coarse threshold. Then there
exists p = p(n), τ > 0, a fixed graph M with Pr[M ⊆ G(n, p)] > τ, α > 0 with

α < Pr[G(n, p) ∈ A] < 1− 3α,

and a constant ϵ > 0 such that for every graph property G such that G(n, p) ∈ G holds a.a.s there
exists an infinte series of n’s, and for each n, a graph G ∈ G on n vertices such that the following
holds.

Pr[(G ∪M∗) ∈ A] > 1− α,

Pr[(G ∪G(n, ϵp) ∈ A] < 1− 2α,

where the random graph G(n, ϵp) is taken on the same vertex set as G. That is, adding a random
copy of M boosts the probability of A more than adding ϵp

(
n
2

)
random edges.

He uses the above theorem to then show sharpness in graph colorability and matching in the
following two lemmas.

Lemma 7 ([Fri05] Claim 3.2). Let k ≥ 2 be fixed, and let H(n, p) be the random k−uniform
hypergraph on n vertices. Then the threshold for appearance of a perfect matching in H(n, p) is
sharp.

Lemma 8 ([Fri05] Claim 3.3). Let k > 2 be fixed, and let H(n, p) be the random k-uniform
hypergraph on n vertices. Then the threshold for H(n, p) being non-2-colorable is sharp.

The proofs of both are based on the hypergraph version of Theorem 6. They use a proof by
contradiction, assuming that these problems have a coarse threshold, and show a contradiction with
one of the conditions laid out in Theorem 6. The former problem is of particular interest as finding
a maximal matching in a graph is a famous NP−complete problem. One of the problems we want to
solve (discussed later) is finding circuit lower bounds for the Ising model in statistical physics. This
problem is known to be reducible to the MaxCut graph problem, another NP−complete problem.
This gives evidence that techniques cited in this survey may be helpful in proving sharp thresholds
for a maximal cut of a graph, and thus finding lower bounds for the Ising model.
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2.3 LMN Theorem

In their celebrated work, Linial, Mansour, and Nisan [LMN93] discovered the relationship between
functions with low-degree Fourier expansions and circuit complexity. Henceforth, the following
theorem will be known as the LMN theorem.

Theorem 9 ([LMN93] Main Lemma). Let f be a Boolean function on n variables computable by
a boolean circuit of depth d and size M , and let t be any integer. Then,∑

S⊂[n],|S|>t

f̂(S)2 ≤ 2M2−t1/d/20,

where f̂(S) denotes the Fourier transform of f at S.

The result we will prove uses an extension of the LMN theorem to arbitrary bias p, rather
than the original LMN theorem. A key condition of the extension is that the Fourier weight bound
depends on a term 1

p(1−p) , so p which are extremely close to 0 or 1 end up giving a very poor bound.

Informally, we can summarize this extended theorem as

Constant-depth, polynomial-size circuits with random p-biased inputs have a low-degree Fourier
expansion, provided that the bias p is bounded away from 0 or 1.

Taken together, Friedgut’s Theorem and the LMN Theorem almost provide a working proof to
the fact that sharp thresholds imply circuit lower bounds. The reasoning roughly works as follows:

“Sharp threshold =⇒ High-degree Fourier expansion =⇒ Hard for small boolean circuits”

where the first implication comes from Friedgut’s Theorem and the second implication comes from
the LMN theorem. However, technical conditions requiring the bias to be bounded away from 0 or
1 for the extended LMN theorem to hold prevent these theorems from fitting together, though the
high level idea still turns out to work. As will be shown, [GMZ23] mends the gap between these
two to complete the chain.

3 Example Applications

Let us give a “boiled-down” statement of the main result of [GMZ23].

Theorem 10 ([GMZ23], Informal). Any Boolean circuit C : {0, 1}n → {0, 1} of depth d =
O(log n/ log log n) which exhibits a ∆-sharp threshold must have size at least exp(∆1/d).

This statement is equivalent to saying that for a Boolean circuit with unbounded fan-in AND,
OR, and NOT gates to compute a function with a sufficiently sharp threshold, it must either have
sufficiently large depth d = Ω(log n/ log log n) or sufficiently large size s = Ω(exp(∆1/d). A corollary
of this theorem for AC0 circuits follows from the requirement that any constant-depth circuit must
have exponential size in ∆Θ(1).

Corollary 11 (AC0 hardness of sharp thresholds ). Let f : {0, 1}n → {0, 1} be a Boolean function
which has a sharp threshold with arbitrary critical point pc(n) ∈ (0, 1) and sharpness ∆ = nΩ(1).
Then f cannot be computed on average around the critical window by any AC0 circuit.

We will now give a few examples of newly established results that come as simple applications
of Corollary 11 to a variety of settings.
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3.1 k-clique in random graphs

Definition 12. (The k-clique problem). Let n, k ∈ N with k ≤ n. Let N =
(
n
2

)
. The k-clique

Boolean function f : {0, 1}N → {0, 1} equals to 1 if and only if the n-vertex graph G ∈ {0, 1}N
contains a k-clique. Each possible edge in G is parameterized by one of

(
n
2

)
bits and is present if

the value is 1 and is missing otherwise.

We use the following properties of the k-clique threshold, presented without proof.

Fact 13. A circuit C that computes the k-clique Boolean function on average for k = Θ(n) will
exhibit a sharp threshold at pc = 1 − Θ(1/n) with a critical window size εn = o(n−3/2+γ) for a
small γ > 0.

Note min{pc, 1 − pc} = Θ(1/n). Then, εN
min{pc,1−pc} < n−1/2+γ so the sharpness of the circuit

is then ∆ = n1/2−o(1). Applying corollary 11 to this sharp threshold, we can see that AC0 cannot
compute the k-clique problem on average for k = Θ(n) around its critical threshold.

The existence of a k-clique is an example of a monotone graph property. Briefly, a monotone
graph property is a property such that if it holds for any subgraph H of G, it also holds for G. As
was first shown in [FK96], it is known that every monotone graph property has a sharp threshold.
Therefore, we can expect to draw similar conclusions about AC0 hardness for other monotone graph
properties as well.

3.2 Random 2-SAT

Definition 14. (Random 2-SAT). A 2-SAT formula is a conjunction of m distinct clauses which
are each the disjunction of two distinct literals in {x1, . . . , xn, x1, . . . , xn}. Let C1, . . . , C2n(n−1) be
an enumeration of all possible 2-SAT clauses. Let N = 2n(n− 1). Let X ∈ {0, 1}N be an encoding
of a 2-SAT formula where Xi = 1 iff clause Ci is used in the formula. The 2-SAT Boolean function
f : {0, 1}N → {0, 1} is defined such that f(X) = 1 if and only if the corresponding 2-SAT formula
of X is satisfiable.

We use the following properties of the random 2-SAT threshold which were first shown by
[Bol+01], presented here without proof.

Fact 15. A circuit C that computes the 2-SAT function f on average will exhibit a sharp threshold
at pc = Θ(1/n) with a critical window size εN = Θ(n−4/3).

Note εN
min{pc,1−pc} = Θ(n−1/3) so the sharpness of the circuit is ∆ = n1/3. Applying corollary

11 to this sharp threshold, we can see that AC0 cannot compute the 2-SAT Boolean function on
average around its critical threshold.

3.3 Statistical estimation of planted k-clique

This section gives an example of a circuit lower bound against a statistical estimation problem,
showing that the result can be applied in a variety of settings.

Definition 16 (Hidden Subset Problem). Fix N and an arbitrary known prior distribution P over
{0, 1}N . The Hidden Subset Problem is a task parameterized by prior P. For some noise level
p ∈ (0, 1) and a sample S ∼ P, you observe S ∨X where X ∼ Pp. The goal is for you to construct
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an estimator function A = A(N,P, p) : {0, 1}N → {0, 1}N which achieves exact recovery with a
good probability of success, i.e. for sufficiently large N it holds that

Pr
S∼P,X∼Pp

[A(S ∨X) = S] ≥ 0.9

The larger the noise level p, the harder it will be to recover the hidden subset S. There is an
information-theoretic threshold pIT where for any noise level below the threshold there exists an
estimator which achieves exact recovery, while for any noise level above the threshold no estimator
can achieve exact recovery. The All-or-Nothing (AoN) phenomenon occurs when there is a sharp
threshold present in the maximum value over all boolean functions A of PrS∼P,X∼Pp

[A(S∨X) = S]
as a function of the noise level p.

Definition 17 (Planted k-clique problem). Fix n vertices and some k. Let N =
(
n
2

)
be used to

index all possible undirected edges between the n vertices. The k-clique problem is the Hidden Subset
Problem where S ∼ P is the prior on {0, 1}N which chooses k vertices at random and adds the edges

between them to form a clique. Let S ∈ {0, 1}(
n
2) be the indicator of edges in this k-clique. Then

the estimator is given a noisy sample S ∨X where X ∼ Pp.

This corresponds to a graph where S is a planted k-clique and every other edge appears inde-
pendently with probability p, and the goal is to identify S exactly. We then use the following facts,
presented without proof.

Fact 18. For k where (log n)ω(1) = k ≤ n1/3−Ω(1), the k-planted clique problem exhibits the All-
or-Nothing phenomenon for exact recovery at some pIT = 1−Θ(log n/k) and with critical window
size ε = Θ(1/k2).

We obtain that the sharpness of the All-or-Nothing threshold is ∆ = Ω(k). For k where
(log n)ω(1) = k ≤ n1/3−Ω(1), this implies that no circuit in AC0 can solve the planted k-clique
statistical estimation problem.

4 Main Proof of [GMZ23]

4.1 High-level idea & sketch

The key motivation for this paper is to formalize a connection between the presence of a sharp
threshold in a Boolean function and its corresponding circuit complexity. The authors provide
some background for the result. First off, we are given some definitions for what exactly a sharp
threshold is, in terms of a window size ε and a critical point pc. In particular, Friedgut’s paper
[FB99] established that properties with sharp thresholds cannot be supported on low degree Fourier
terms. However, the issue with this argument is that Friedgut’s theorem primarily applies for cases
when the bias pn is close to zero, whereas bounds from the LMN theorem only work for pn = O(1)
and degrade rapidly as the bias converges to zero.

This is addressed in [GMZ23] by working on a “debiasing” technique first introduced in [GJW22].
At a high level, they construct for any threshold pc a “biasing” layer and apply this to a circuit.
Whenever the original circuit exhibits a sharp threshold, the transformed circuit also exhibits a
sharp threshold, but this time at a constant critical probability bounded away from 0 or 1. With
this new critical probability, we can then apply other known results on this modified circuit. The
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application of this debiasing technique enables average-case around the critical point circuit lower
bounds analysis for problems with critical thresholds pc arbitrarily close to 0 or 1, for example the
satisfiability of a random 2-SAT formula or the existence of a k-clique in a random graph.

As a result, the general approach for utilizing this result is as follows: we take a Boolean
function f with a sharp threshold at pc with a critical window size of εn. If some depth-d (where
d = O(log n/ log log n)) circuit C agrees with f with high probability around the critical threshold
pc, then we can apply the main result to conclude a lower bound on the size s of C to be at least

exp(∆1/d) where ∆ = min{pc,1−pc}
εN

. When εN
min{pc,1−pc} = O(N−c) for c > 0 this implies f /∈ AC0.

The main proof will proceed as follows.

1. We will first reduce the argument to the pc ≤ 1/2 case since we can argue that having a
Bernoulli parameter of pc > 1/2 for the positive affirmation of an instance is equivalent to
having another Bernoulli parameter p′c ≤ 1/2 for the negative instance.

2. We then introduce the concept of a “debiasing” layer Φ, which takes in N log 1/p0 input
bits with a large constant bias p1 = Θ(1) and maps them to N output bits with small bias
p0 = o(1).

3. This is then appended to the bottom of a target circuit C and helps us provide input bits
to C such that they “typecheck” while also enabling us to use a more amenable Bernoulli
parameter p1 that is conducive to analysis via theorems such as LMN.

Therefore, given this purpose, the onus is on us now to provide a valid construction and justification
of Φ. We then will demonstrate a correspondence between the sharp threshold for circuit C and
the sharp threshold for the circuit with the debiasing layer concatenated in front C ◦ Φ. This then
validates our debiasing layer construction with respect to our higher-level needs and purpose. Once
we have a friendlier circuit C ◦ Φ to deal with, we can then apply well-established results from the
analysis of boolean functions on C ◦ Φ to arrive at our desired size and depth trade-offs for the
original C.

4.2 Proof

Recall that for notation purposes, Epf = EX∼Pp
f(X). Let us use a slightly different but equivalent

definition of a sharp threshold to what we saw earlier:

Definition 19. A function f exhibits a sharp threshold with window size ε = εN ∈ (0, 1) if for
some critical threshold 0 < pc = (pc)N ∈ (0, 1) and jump size δ = δN ∈ (0, 1), for sufficiently large
N , |E(1+ε)pc

f − E(1−ε)pc
f | ≥ δ.

The main statement we will prove is as follows:

Theorem 20. For some universal constants c1, c2 > 0 the following holds. Let C : {0, 1}N → {0, 1}
be a circuit of size s = sN and depth d = dN . Suppose C exhibits a sharp threshold with window
size ε = εN , jump size δ = δN at critical threshold pc = (pc)N .

Let β := min{pc, 1− pc} and assume β = N−Ω(1) and ε = o((1− pc)/ log 1/β). Then for some
universal constants c1, c2, c3 > 0, the following holds for sufficiently large N :

(1) Either,

d ≥ 1

2 log logN
log

[
δ(1− pc)

ε log 1/β

]
− 3,
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i.e., the ”depth is large”

(2) Or,

s ≥ c1 exp

(
c2

(
δ(1− pc)

ε log 1/β

)1/(d+3)
)
,

i.e., the ”size is large.”

First, observe that for any circuit C, we can define the circuit C′(X) := C(¬X), where C′ has
almost the same size and depth as C and satisfies

E
p
[C′] = E

1−p
[C]

We simply negate the inputs for circuit C. Thus, if each input of C is assigned 1 independently with
probability p > 1/2, then each input of C′ will be assigned 1 with probability p′ ≤ 1/2. Since the
size and depth are barely affected (we simply need to negate inputs), this transformation can be
done without affecting our conclusions. Moreover, C has a sharp threshold at pc with window size
εN if and only if C′ has a sharp threshold at 1 − pc with window size ε′N = εNpc/(1 − pc). Lower
bounds are thus shared between C and C′ since they are equivalent up to negation. As a result, we
only need to worry about when pc ≤ 1/2: if C has a critical point pc ≥ 1/2, then just consider C′

which will have critical point 1− pc ≤ 1/2. This allows us to generalize our proof to the pc ≤ 1/2
case.

Next, we introduce a tool that lets us move a critical point from close to 0 to a constant region
by appending a depth-1 “debiasing layer” of bounded size to the bottom of our circuit:

Lemma 21. Let N ∈ N and arbitrary p0 = (p0)N ≤ 1/2. There exists a depth-1 and size
O(N log 1/p0) circuit Φ : {0, 1}N⌈log 1/p0⌉→{0, 1}N and some p1 = (p1)N ∈ [1/2, 1/

√
2) such that

• Φ
(
Bern(p1)

⊗N⌈log 1/p0⌉
) d
= Bern(p0)

⊗N

• For any 0 < γ = γN = o
(

1
log 1/p0

)
, there exists 0 < rN = Θ(γ log 1

p0
) = o(1) with

Φ
(
Bern(p1 − rn)

⊗N⌈log 1/p0⌉
)

d
= Bern(p0(1− γ))⊗N

A proof of this lemma will follow in the next section, but using this lemma for our main proof,
we note that condition 1 of the lemma essentially let’s us shift a Bernoulli parameter p0 to a “nicer”
one p1. Assuming pc ∈ (0, 1/2), we then choose p0 := (1+ εN )pc. Then, for some p1 ∈ [1/2, 1/

√
2),

we get the following:

E
p1

[C ◦ Φ] = E
(1+εN )pc

[C].

In other words, we have successfully shifted away p0 to a “nice” p1 that enables us to use our
tools for analysis.

Likewise, condition 2 of the lemma is targeted towards the preservation of sharpness in our
circuit. Letting γ = 1− 1−εN

1+εN
, we then obtain some rN = Θ(εN log 1/pc) = o(1) such that

E
p1−rN

[C ◦ Φ] = E
(1−εN )pc

[C].
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In other words, the region around our “nice” p1 also acts as a sharp threshold, thus allowing us to
connect these sharp thresholds with our desired size and depth trade off.

The interval (1 − εN )pc to (1 + εN )pc is the critical window of C. Using the debiasing layer,
the critical window is mapped to the interval p1 − rN to p1 for C ◦ Φ. Over an interval of width
rN = Θ(εN log 1/pc), the value of Ep[C ◦ Φ] will change from near 0 to near 1. We assume for
simplicity that the change in Ep[C ◦ Φ] in this range is exactly equal to 1. Since p1 ∈ [1/2, 1/

√
2)

and rN = Θ(εN log 1/pc) = o(1), the range (p1 − rN , p1) ⊆ [1/3, 2/3]. By the mean value theorem,

max
p∈[1/3,2/3]

∣∣∣∣ ddp E
p
[C ◦ Φ]

∣∣∣∣ ≥ 1/rN =
1

Θ (εN log 1/pc)

We can then invoke two well-established results that are used here without further proof.

Lemma 22. (One-sided Russo-Margulis lemma.) For any Boolean function f : {0, 1}N → {0, 1},
we have ∣∣∣∣ ddpEp[f ]

∣∣∣∣ ≤ (p(1− p))−1Ip(f)

where Ip(f) =
∑n

k=1 I
k
p (f) is the total influence of f .

Lemma 23. (Extension of LMN Theorem to arbitrary p.) For some constant c0 > 0, if C :
{0, 1}N → {0, 1} is a Boolean circuit of depth D and size S, then

Ip(C) ≤ c0

(
10 logS

p(1− p)

)D+2

These lemmas allow us to control the slope, | d
dp Ep[f ]| when p is bounded away from 0 or 1, as

a function of size S and depth D.
To finish the main proof, we let C be of size s and depth d. Circuit C ◦ Φ is thus of size

S = s+O(N log 1/pc) and depth D = d+ 1. Recall we showed earlier that

max
p∈[1/3,2/3]

| d
dp

E
p
[C ◦ Φ]| ≥ 1

Θ(εN log 1/pc)

By chaining this together with the inequalities from the lemma we obtain that

exp

(
O

((
1

εN log 1/pc

))1/(d+3)
)

≤ s+N log 1/pc

This inequality implies that at least one of the following must be true:

exp

(
O

((
1

εN log 1/pc

))1/(d+3)
)

≤ s

or

exp

(
O

((
1

εN log 1/pc

))1/(d+3)
)

≤ N log 1/pc

The depth-size trade-off of the original circuit C can at last be obtained via algebraic manipu-
lation, yielding the desired circuit lower bounds. ■
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4.3 Proof of Lemma 21

To finish the main proof, we will prove the key lemma surrounding the debiasing layer. To reiterate,
the debiasing layer is a construction we’ll use to make a circuit amenable to analysis. Its purpose
is to shift the critical point away from 0 (which is a problem when applying the Friedgut and LMN
results). Using the debiasing layer, we create a new circuit C∗ = C ◦ Φ such that we can have C∗

use a “nice” critical point but still behave like our original C. Furthermore, bounds on the depth
and size of the debiasing layer means that any size-depth tradeoff from C∗ is also inherent to C.

The construction of the debiasing layer is as follows. We split input X ∈ {0, 1}N⌈log 1/p0⌉ into
N disjoint blocks of ⌈log 1/p0⌉ consecutive bits X1, ..., XN ∈ {0, 1}⌈log 1/p0⌉. Then, for each block

Xi, set Φ(X)i =
⌈log 1/p0⌉∧

j=1

(Xi)j . In other words, we take the AND of every bit in block Xi. We can

see that Φ can be modeled as a depth-1, size-O(N log 1/p0) circuit.
Observe that the AND gate for each block Xi lights up as 1 if and only if all ⌈log 1/p0⌉ bits

inside the block are 1. For any p ∈ (0, 1), each individual bit is 1 with probability p. Therefore, the
probability the whole block Xi is 1 is p⌈log 1/p0⌉. In other words, the circuit Φ outputs N Bernoulli
trials, each with success probability p⌈log 1/p0⌉. This is the key idea that lets us shift our Bernoulli
parameter towards favorable terms.

We will now show the two desired statements:

1) Φ
(
Bern(p1)

⊗N⌈log 1/p0⌉
) d
= Bern(p0)

⊗N

2) For any 0 < γ = γN = o
(

1
log 1/p0

)
, there exists 0 < rN = Θ(γ log 1

p0
) = o(1) with

Φ
(
Bern(p1 − rn)

⊗N⌈log 1/p0⌉
)

d
= Bern(p0(1− γ))⊗N

Condition 1 is fairly straightforward. Let p1 = p
1/⌈log 1/p0⌉
0 . We know by assumption p0 ≤ 1/2,

so p1 ∈ [1/2, 1/
√
2) as desired:

p1 = 2−(log 1
p0

)/⌈log 1
p0

⌉ ∈ [1/2, 1/
√
2) = Θ(1)

We also know p
⌈log 1/p0⌉
1 = p0. Therefore, we can now use the “nice” Bernoulli parameter p1. Our

blocks Xi then simulate inputs over the original parameter p0 for the original circuit C.
To show Condition 2, a technical statement saying that the sharpness is preserved (by relating

window sizes rn and γn of the modified and original circuit respectively), we set p = p1 − rn.
Remember that the debiasing layer essentially took in N⌈log 1/p0⌉ Bernoulli trials under parameter
p and turned them into N Bernoulli trials under parameter p⌈log 1/p0⌉:

Φ
(
Bern(p)⊗N⌈log 1/p0⌉

)
d
= Bern(p⌈log 1/p0⌉)⊗N

We find that p = p1 − rn satisfies the solution rn > 0 of

(p1 − rn)
⌈log 1/p0⌉ = p0(1− γ)

where rn = Θ(γ log 1/p0). This equation thus implies:

p1 − rn = p1(1− γ)1/⌈log 1/p0⌉

11



Finally, because we know γ log 1/p0 = o(1) and p1 = Θ(1):

rn = p1 − p1(1−Θ(γ log 1/p0)) = Θ(γ log 1/p0)

We are thus able to preserve the sharp threshold by showing this relationship between window
sizes for both C and C∗ = C ◦ Φ. This finishes our proof of the lemma. ■

5 Problems & Future Directions

5.1 Application to the Ising Model

As previously mentioned, sharp thresholds have wide-ranging applications in statistical mechanics.
A prime candidate for sharp thresholds is the Ising model. The Ising model consists of an ensemble
of particles which can either take on a spin value of +1 or −1. Each particle has a magnetic
interaction with its neighbor as well as with an external magnetic field. The Hamilton, or energy
of such a system consisting of particles S = {si} can be described as

H(S) = −
∑
⟨i,j⟩

Jijsisj − h
∑
i

si,

where ⟨i, j⟩ denotes the particles sj that are adjacent neighbors of si, Jij is the strength of the
local interaction between si and sj , and h is the strength of the local magnetic field. If Jij > 0,
then neighboring particles tend to have symmetric spin, that is, both have spin of either +1 or −1.
Otherwise, if Jij < 0, neighboring particles tend to have antisymmetric spin. At low temperatures,
the particles in the system behave either symmetrically or antisymmetrically depending on J .
However, at high temperatures, the particles no longer follow such a regime; due to high entropy, the
particles are in disarray and have spin values that are independent of each other. This suggests the
existence of a critical temperature Tc at which there exists a sharp threshold of a phase transition.

There is an interesting reduction from the Ising problem in 2 dimensions without an external
field to the MaxCut problem. Imagine the spin values of the particles si ∈ S to be vertices of a
graph G. Then, redefine the Ising model on S to be over the graph G:

H(S) = −
∑

(i,j)∈E(G)

Jijsisj .

Recall that the goal is to find the configuration of S such that the Hamiltonian is minimized,
otherwise known as a ground state. The idea is to now construct 2 subgraphs of G with different
vertices. Denote the set of vertices V+ such that si ∈ V+ if and only si = +1, and likewise, V−
such that si ∈ V− if and only si = −1. Then, denote δ(V+) to be the set of edges that connects the
disjoint subsets V+ and V−. In other words, this is the cut of G. Then, define the weight of each
edge (i, j) to be Wij = −Jij . The size of the cut is then given by

|δ(V+)| =
1

2

∑
(i,j)∈δ(V+)

Wij ,

and the scaling factor of 1/2 is used to compensate for the double counting of weights Wij = Wji

12



in an undirected graph. Then,

H(S) = −
∑

(i,j)∈E(V+)

Jij −
∑

(i,j)∈E(V−)

Jij +
∑

(i,j)∈δ(V+)

Jij

= −
∑

(i,j)∈E(G)

Jij + 2
∑

(i,j)∈δ(V+)

Jij .

As the first term of the second equation does not depend on S as it encompasses the entire graph,
then minimizing ∑

(i,j)∈δ(V+)

Jij

minimizes H(S). Since we defined edge weights Wij to be the negation of Jij , the maximum
cut, that is, the maximum value of |δ(V+)|, also minimizes H, showing a reduction from the Ising
problem to MaxCut.

Although the 2D Ising model has an exact solution for h = 0 due to Onsager in 1944, the above
reduction shows that approximating the sharpness of the phase transition in an Ising model of 3
or more dimensions or in the presence of an external magnetic field through similar methods is a
worthwhile problem to explore.

5.2 Smallest Possible Width of the Critical Window

Another open question we considered was finding further problems with sharp thresholds. Areas
such as graph theory, for example, seemed promising. In particular, under the G(n, p) Erdos-
Renyi model, which is rich with sharp thresholds, we wanted to analyze other graph properties.
For example, the detection of other subgraph structures (not just limited to cliques) was one
interesting avenue. Ultimately, these problems involved narrowing our critical windows so that
they were sharp enough to apply non-trivial bounds. If we can provide better sharp thresholds,
then we can utilize the relationship between the window size εN and the circuit depth and size lower

bound S ≥ exp 1/ε
1/d
N to conclude meaningful circuit lower bounds for detecting these properties.

Friedgut’s line of work in sharp thresholds for random graph properties thresholds further promise
to this idea in terms of the toolkit needed for such analysis.

5.3 Building on the Debiasing Technique

Another direction we thought about was generalizations of the “debiasing” layer technique that
exactly transforms a p1-biased Bernoulli distribution to a p2-biased Bernoulli distribution. In
particular, imagine that we establish that computing a function g is hard on average under some
distribution Dh over {0, 1}m and computing another function f under another distribution De over
{0, 1}n is easy on average. Suppose that you have access to a ‘debiasing filter’ Boolean circuit
Φ : {0, 1}m → {0, 1}n such that when it takes in samples from Dh, it outputs samples distributed
approximately as De. Suppose you have a small circuit C which is able to compute f on average
when you give it the easy distribution De. If you feed Dh into C ◦Φ, it will also be able to compute
the function defined by k(x) := C ◦ Φ(x) on average under Dh. If we can show that function k is
hard to compute under Dh (or somehow choose f and g in a way that lets g have high correlation
with k ≈ f ◦ Φ), then that implies that the probability mapping Φ must require a large circuit to
compute in order to compensate for the small circuit used to compute f .
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5.4 Other families of probability distributions

Additionally, we thought about how to obtain sharp thresholds for other continuously parameterized
families of probability distributions besides the product Bernoulli distributions Bern(p)⊗n. One
way of obtaining a parameterized family of distributions over {0, 1}n is to sample points with
probabilities weighted according to an n-dimensional Gaussian distribution centered at one of the
corners of the cube (or an arbitrary coordinate elsewhere). The continuously varying parameter
p ∈ [0, 1] would be inversely proportional to the variance of the Gaussian distribution, so at p = 0 it
would sample from a Gaussian with variance ∞ giving a uniform distribution, and then at p = 1 it
would sample over a Gaussian with small variance, only giving points close to the center. Depending
on what the center is, this could be another class of distribution families where sharp thresholds
exist, especially if the Gaussian is centered on a hard instance of the problem, while the problem is
easy under the uniform distribution. Note that a distribution that only samples from one (or a few)
instances of the problem should be easy to compute because a circuit could just ‘hard code’ the
answer into it. However, when the variance is increased slightly more it might become non-trivial
to compute, and then when the variance is increased yet more it approaches close enough to a
uniform distribution that it becomes easy to compute again, suggesting that hardness would lay
only around the sharp threshold.
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