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Background Interpolative Methods

Fourier and Chebyshev Interpolation
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* QTN format takes advantage of separation of scales, present in many
physical systems of interest

Example: f(x) = e™ has a directly constructible low-rank quantized tensor

network form. Functionals in quantized tensor network format
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Can also construct functionals in QTN format that
preserve network layout, enabling native transformation
of QTN functions to other QTN functions.

Koopman (composition) Kg[f](x) = f(g(x))
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Automatic determination of tensor network Iayout
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* The most well-studied layout for QTNs is a matrix
product state (MPS): “— —‘—‘ .|
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Conclusions & Future Research
e Mutual information I(x;; x;) gives a measure of D g Through the development of the ITensorNumericalAnalysis.jl library, we expand
correlation between two input variables x; and the toolbox of techniques for applying quantized tensor networks to scientific
X;. domains that require memory-efticient representation and manipulation of

multivariate functions.
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* We explore determining tensor network layout
Future research desiderata include:

* Rigorous criteria & algorithms for optimizing tensor network layout via mutual
information

by finding a maximum spanning tree using
pairwise Ml values as edge weights of a graph.

e Should balance Ml with low degree and scale
* An improved TCl variant that dynamically determines tensor network layout

* Implementations of QTN operators that induce change of coordinate system e.g.
Above: Optimal spanning tree layouts for the above 2D functions according to Ml heuristic. Two high Polar to Cartesian: (ra 9) — (I” COS 99 r Sin 9) ; 1 > .

locality to obtain memory-efficient layouts.

degree nodes are found for the circle, while the Sierpinski triangle forms a line along each dimension.
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