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• A tensor of rank r is a multilinear map that can be represented with an 
r-dimensional array of numbers.
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• Tensor networks are factorizations of very large tensors into networks of 
smaller tensors. If a low-rank factorization exists, it is exponentially more 
memory efficient than the original tensor.

 

Functionals in quantized tensor network format

• A quantized tensor network (QTN) representation encodes a function of 
continuous variable(s)  on a bounded domain to  bits of precision using a 
tensor network :
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Automatic determination of tensor network layout

1. Find the Fourier/
Chebyshev coefficients 

 for  (1D or 2D) 
2. Truncate the coefficients 
vector/matrix to desired 
precision.

{ci}i∈ℕ f(x)

Example:  has a directly constructible low-rank quantized tensor 
network form.

f(x) = eax
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• Can directly construct exponentials, 
trigonometric functions, polynomials, and 
sums and products of these functions

Fourier and Chebyshev Interpolation

Tensor Cross Interpolation (TCI)

Mutual Information (MI):

Kg[ f ](x) = f(g(x))

ℱ[ f ](k) =
2n

∑
x=0

f(x)e−2πikx/2n

Koopman (composition) 
operator T = Kg

Fourier operator 
T = ℱ
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∑
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P(X = x, Y = y)log ( P(X = x, Y = y)
P(X = x)P(Y = y) ) P(x1, …, xn) =

| f(x1, …, xn) |2

∑x′￼1,…,x′￼n
| f(x′￼1, …, x′￼n) |2

• Mutual information  gives a measure of 
correlation between two input variables  and 

. 
• We explore determining tensor network layout 

by finding a maximum spanning tree using 
pairwise MI values as edge weights of a graph. 

• Should balance MI with low degree and scale 
locality to obtain memory-efficient layouts.
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(c0, c1, …, ck, …) 3. Construct approximation of  
as weighted sum of QTN basis 
functions (sines/cosines/
polynomials*)
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(*use recursive Clenshaw evaluation for efficient 
construction of truncated Chebyshev expansions)

Above: Optimal spanning tree layouts for the above 2D functions according to MI heuristic. Two high 
degree nodes are found for the circle, while the Sierpiński triangle forms a line along each dimension.

• TCI is a tensor network 
learning algorithm that 
adaptively interpolates a 
desired function/tensor 
using matrix cross 
interpolation.

Application of 
Koopman operator

Application of 
Fourier operator

Can also construct functionals in QTN format that 
preserve network layout, enabling native transformation 
of QTN functions to other QTN functions.

• The most well-studied layout for QTNs is a matrix 
product state (MPS): …

s1 s2 sn−1 sn

• However, numerical experiments indicate other layouts can outperform an MPS

c1,1 c1,2 ⋯ c1, j ⋯ c1,n
c2,1 c2,2 ⋯ c2, j ⋯ c2,n

⋮ ⋮ ⋱ ⋮ ⋮
ci,1 ci,2 ⋯ ci, j ⋯ ci,n

⋮ ⋮ ⋮ ⋱ ⋮
cm,1 cm,2 ⋯ cm, j ⋯ cm,n

, f(x) = e−10x g(x) = (x − 0.5)2

Above: TCI approximates a large matrix by interpolating on a selected submatrix 
defined by pivots (empty circles).

• QTN format takes advantage of separation of scales, present in many 
physical systems of interest

Through the development of the ITensorNumericalAnalysis.jl library, we expand 
the toolbox of techniques for applying quantized tensor networks to scientific 
domains that require memory-efficient representation and manipulation of 
multivariate functions. 
Future research desiderata include: 
• Rigorous criteria & algorithms for optimizing tensor network layout via mutual 

information 
• An improved TCI variant that dynamically determines tensor network layout 
• Implementations of QTN operators that induce change of coordinate system e.g. 

Polar to Cartesian: (r, θ) → (r cos θ, r sin θ)

TCI

• Fourier/Chebyshev interpolation 
struggles with non-smooth functions 
e.g. image data or step functions.

Above: Fourier basis functions

This project uses and contributes to the development 
of ITensorNumericalAnalysis.jl, a part of the ITensors 
ecosystem developed at CCQ.


