Quantum Space Advantage for Streaming Approximations

Ryan Anselm David Joy

December 14, 2025

1 Introduction

We present a unified survey of a line of works culminating in a provably exponential quantum space advantage
in the streaming model for approximating the value of the maximum directed cut problem (Max-DiCur).

This is quite a notable result in quantum computing because it is rare to have a quantum resource
advantage that is simultaneously exponential, unconditionally provable, and for a problem of independent
interest. For example, Simon’s problem provides an unconditionally provable and exponential separation,
but was artificially contrived for the sake of demonstrating the separation and is of no independent interest;
Shor’s factoring algorithm is believed to be exponential and is of independent interest, but it has not been
rigorously proven that no efficient classical factoring algorithm exists; and Grover search is provable and
of great independent interest, but only gives a quadratic speedup. In order to fully appreciate this result,
however, an understanding of both classical and quantum streaming algorithm design, as well as streaming
lower bound techniques, is required. This survey collects together a streamlined presentation of key results
scattered across several papers, namely:

* A O~(\/ﬁ) space classical streaming algorithm for 0.483-approximating Max-D1CuT using an object
known as the snapshot, developed in sections 2 and 3. [FJ10; Sax+23b]

* A Q(y/n) classical space lower bound on approximating Max-DiCut better than % ~ 0.444 in the
streaming model, presented in section 4. [CGV21]

* Finally, a “quantization” of the classical streaming algorithm that achieves a space reduction to
polylog(n) space when allowed to used quantum memory in additional to classical, presented in
section 5. [KPV23; KPV24]

Definition 1.1 (Maximum Directed Cut). Let G = (V, E) be a directed graph where by convention n = |V|
and m = |E|. Then
Max-DiCur(G) = max [{ub € E:z, =0,z, =1}|.
z€{0,1}"

Max-Di1Cur is closely related to the more well-known Maximum Cut (Max-Curt) problem, which is
defined in the same way except that the graph G is undirected. Note that Max-Cut can be reduced to
Max-DiCur by defining a directed graph with two edges ut and v for every undirected edge wv in the
Max-Cur instance.

Streaming Problems. In the streaming model, the input to an algorithm is larger than the memory the
algorithm is allowed to store. To even be able to take in this enormous input, the input is progressively fed to
the algorithm one piece at a time in a stream. Algorithms which work in the non-streaming setting may no
longer work because they require too much space or need to query arbitrary parts of the input on-demand.
This means that novel algorithmic techniques are needed for streaming problems that may be well-studied

in non-streaming settings such as Max-Cut and Max-DiCurt. Simultaneously, imposing limitations on the
memory sublinear in the size of the input opens the avenue for unconditionally proving impossibility results
and lower bounds in the streaming setting via information-theoretic limitations.

The input model we use is the standard insertion-only, (non-adaptive) adversarial-order, single-pass
graph streaming model. This is the model where an exponential quantum space advantage is achieved
for Max-DiCut. Specifically, suppose that for directed unweighted graph G, its edges arrive one at a
time to the algorithm as ordered pairs (u,v); € E for 1 < i < m where u,v € V. At the end, the
algorithm achieves an c-approximation for Max-DiCut(G) for some 0 < a < 1 if it outputs an x such that
a - Max-DiCut(G) < 2 < Max-DiCur(G) with high probability. Each edge only arrives once, and can
arrive in an arbitrary order that is fixed before the algorithm starts running. Note that the goal is thus to
approximate the value of the maximum cut; outputting the cut itself is not required.

2 Oblivious Techniques for Maximum Directed Cut

2.1 Background and Definitions

The trivial algorithm of ignoring the stream and randomly assigning each vertex uses constant space and
achieves an approximation ratio of % (since edges are directed, the probability of cutting an edge is %, not
%). It is not immediately obvious how space insufficient to store the graph could improve this: we need to
find features in the graph that are useful but small. In this section, we will lay the groundwork through an
analysis of oblivious algorithms.

Definition 2.1 (Bias). The bias of a vertex is its out-degree divided by its degree.

The out-degree of a vertex v is the number of ud edges (edges to v, as opposed to ol edges). Thus a
“giver” vertex with all incident edges pointing away from it has bias 1, while a “taker” vertex with all incident
edges pointing into it has bias 0. Note that vertices of degree 0 have no bearing on a cut problem, so we can
assume they do not exist.

This definition of bias comes from [FJ10]. Other authors such as [Sax+23b] define bias as 3‘;;;2, giving
it a range of [—1, 1]. This choice does not affect the algorithms or complexity results, as the two definitions

can easily be converted, but can be annoying when reading the literature.

Definition 2.2 (Oblivious Algorithm). An oblivious algorithm defined by a function f : [0,1] — [0,1]. It
independently assigns each vertex x,, = 0 with probability f(bias(v)) (and x, = 1 otherwise).

A key insight is that this is a local, parallel operation: Processing a vertex only requires knowledge of
the directions of incident edges; this is oblivious of the graph’s overall structure or the assignment of other
1

vertices. The trivial algorithm described at the start of the section is oblivious with f(b) = 5.

2.2 A .375 approximation

We will now show the .375 approximation from Feige and Jozeph [FJ10]. They gave a proof based on
modifying and reflecting the graph, but we have written an LP-based proof, as this technique will be needed
in the next section. Consider the “three-bucket” function

0 belo,3)
fa®) =142 beld3
1 be(3,1]

This function makes sense: the higher the bias, the more edges point away from the vertex, and thus the
more edges that require z,, = 0 to cut. We will prove it beats the trivial algorithm.

= .375.

Proof: Split the vertices into six sets: 57, S92, and S3 are vertices for which OPT assigns z,, = 0 and that
are in the first, second, and third buckets of f3, respectively. Sy, S5, Sg are the corresponding vertices that
OPT assigns x,, = 1. Define

Theorem 2.3. An oblivious algorithm using f3 achieves an approximation ratio of %

1
Max-DiCut(G)

Lastly, let ¢; and u; denote the lower and upper bounds on the bias of vertices in .5;; let f; denote the value
of f(b) on these biases. This gives the following LP:

ub € E:ue S;Ave S|

xij =

minimize Z Z fi(l = fj)aij subject to
i€[6] j€[6]
oY a=1 (1)
1€[3] j€[4,6]
0> wp i <Y a Vi € [6] 2)
jE[6] jE€[6]
wi > @i >y Vi € [6] 3)
JE[6] JE[6]

(1) ensures the variables are scaled by m; this makes the objective function be the expected value
of the oblivious algorithm’s solution divided by Max-DiCut(G), which is its approximation ratio. (2) and
(3) ensure that the average bias in each S; is within the bounds. Note, however, that this is merely a guarantee
on the average bias, and that it allows equality on all bounds. This means that while every graph can be
written as an LP solution, not every LP solution has a corresponding graph. However, this just means that
the optimal LP value is a lower bound on the true approximation ratio, exactly the type of guarantee we want.

Solving this LP yields an optimal value of .375, proving that for every graph, expected value of the
algorithm’s solution is at least .3750PT.

2.3 A .483 approximation

The LP-based analysis from the previous section works to analyze any oblivious algorithm based on a
piecewise constant function: If there are k cases, the analysis will have 2k sets, giving an LP with 4k?
variables and 4k? 4 2k + 1 constraints, which can be efficiently solved. Using an LP solver, this gives a way
rapidly evaluate many such algorithms mechanically instead of having to come up with proofs.

Feige and Jozeph came up with a piecewise constant function with 102 cases: the function they use,
which we shall term f1¢9, is an approximation to

0 bel0, 1)

1
g(b) = 2 - 3 be i, 2]
1 be (3,1

where the middle case is approximated using 100 equal-sized intervals. Using the LP-based proof creates
an enormous 41616-variable LP. Nevertheless, this can be solved with the aid of a computer, yielding an
optimal value above .483, proving that f1g2 gives a .483-approximation [FJ10].

It is known that .5 is an upper bound for oblivious algorithms [FJ10], so this is a quite good result. To
see this bound, consider a 2n-length cycle: The optimal cut has value n, but every vertex has an identical
bias of .5, so an oblivious algorithm’s expected value is 2nf(.5)(1 — f(.5)) < .5n.

3 Lifting Oblivious Algorithms to Streaming Algorithms

Recall that in the streaming setting, we no longer are interested in producing an assignment of vertices, but
instead wish to merely estimate the value of the maximum cut. A straightforward approach would be to
keep track of the in-degree and out-degree of each vertex during the stream, then calculate biases and use
the oblivious algorithm. However, this requires linear space, and we seek o(n)-space streaming algorithms.
The primary question in creating a streaming algorithm out of an oblivious algorithm is thus “how much
information can we lose while maintaining the performance guarantee from the oblivious algorithm?” The
following definitions and theorem answer this question.

Definition 3.1 (Zeroth-Order Snapshot). A zeroth order snapshot is parameterized by ¢ + 1 thresholds
0 =19 <ty... <ty =1and consists of bias classes V1 UV5...V, = V where V; contains vertices with biases
between t;_1 and t;.

In order to use the oblivious algorithm from the previous section, we take ¢ = 102 and set the thresholds
to match the cases of fig2. Thus, fip2(v) is constant for all all vertices in each V;; we will denote this value

as fio2(V3).

Definition 3.2 (First-Order Snapshot). A first order snapshot is parameterized by the same thresholds and
consists of an £ x £ matrix Mg where

(Mg)ij=|ub € E:ue F;Av e Fj|

A first-order snapshot is a count of how many edges go between each pair of bias classes. There is no
clear way to calculate this exactly in sublinear space, but the following theorem shows that there is value in
approximating it:

Theorem 3.3. If N approximates M¢ such that |N; j — (Mg); j| < em for every entry, then

(483 — OMax-DiCur(G) < Y fioa(Vi)(1 — fr02(Vj))Nij — % < Max-DiCur(G)
1,j€L

Note that although N has 1022 entries, this is a constant independent of the graph size; the space
complexity will come from our method to create N. For simplicity, we have slightly weakened this theorem
from Corollary 3.1 in [Sax+23a]. The proof of this theorem is lengthy and can be found in the reference.
The takeaway is that as long as we can estimate the first-order snapshot to additive error, we will get an
approximation ratio close to that of fig2. The loss in the approximation ratio is bounded by the error in
approximating the first-order snapshot, giving us a clear goal to design an algorithm around. This has
essentially reduced the maximum-cut problem to one of edge-counting.

There were many intermediate steps in creating a full O(y/n) space streaming algorithm, which we
will recap using three theorems. Each theorem is the results of significant technical work in [Sax+23a] and
[Sax+23b], so we can merely provide some intuition behind each one and direct the interested reader to read
the references in full.

Theorem 3.4. If the stream were randomly (instead of adversarially) ordered, there exists an O(log n)-space
algorithm that creates the S required by Theorem 3.3 with probability at least %

The idea here, detailed in Algorithm 2 of [Sax+23a], is to store the first k£ (which is a constant) edges
appearing in the stream, yielding a subset of < 2k vertices. Since this is a constant, these vertices’ biases
may be calculated exactly in O(log n) space. Lemma 3.2 of the paper then proves that for large enough &
(the exact value depends on €), this provides enough information to estimate the first-order snapshot for the
entire graph.

This critically depends on the randomness restriction: The proofs utilize the first £ edges of the stream
being a random sample of the graph, which is not true in the adversarial setting.

4

Theorem 3.5. If we were allowed two passes (instead of one) there exists an O(logn)-space algorithm that
creates the S required by Theorem 3.3 with probability at least %

This follows from the algorithm in the previous theorem: Given two passes, the first pass may be used
to randomly sample edges. The second pass runs the algorithm using these random edges. Thus, a second
pass seems to give similar power to changing an adversarial ordering to random.

Theorem 3.6. If the degree of every vertex in G is at most d, a O (d%\/ﬁlog2 n) = Od(\/ﬁ)-space
algorithm that creates the S required by Theorem 3.3 with probability at least %

The key insight here is that the maximum number of edges is bounded, and that certain techniques are
unlocked if the number of edges is (approximately) known in advance. Algorithm 3 of [Sax+23a] runs many
O(\/ﬁ) estimators in parallel, each with a different guess of the number of edges, then looks at the closest
one once the stream ends. The workhorse is Lemma 3.3, which states that the required error bound will
be met so long as the true number of edges is within a factor of 2 of the estimator’s guess. This allows a
logarithmic number of estimators.

Due to the d> dependence, this is only helpful in the case where d is small. For d = n, this algorithm
takes quadratic space, worse than the straightforward “calculate all biases exactly” algorithm!

Each of these three theorems, and the corresponding algorithms, appeared in [Sax+23a]. Thus, the state of
the art after this paper was that a .483 approximation algorithm for Max-DiCut was known in the streaming
model, but only if the graph had bounded degree. This degree bound was soon removed in the authors’
follow-up work [Sax+23b]. This work is even more technical and involved than the last. The main intuition
is to use higher-order snapshots, plus many technical tricks and workarounds, to combat the worst adversarial
cases stemming from unbounded degree. This yields the following theorem as the conclusion of this section.

Theorem 3.7. There exists a Od(\/ﬁ)-space classical algorithm that .483-approximates Max-DiCur in the
streaming model with probability at least %

4 Streaming Approximation Lower Bound

Unconditional lower bounds in the standard input model of computation are usually hard to come by. In the
streaming model, however, lower bounds on space requirements have successfully been shown uncondition-
ally. We present one such streaming lower bound on space due to [CGV21] which states that, classically,
any streaming algorithm that achieves better than a % ~ 0.444 approximation ratio for Max-D1Cut requires
Q(y/n) memory. This result serves to juxtapose with the following section, which presents a quantum
streaming algorithm for Max-DiCut which achieves an approximation ratio of 0.483 > 0.444, while using
only polylog(n) qubits of quantum memory. The combination of proven classical hardness and proven
quantum easiness is what makes a separation “provable”.

Max-D1Curt belongs to a class of problems known as maximum constraint satisfaction problems (Max-
CSPs), and more specifically, it is a type of Max-2CSP, meaning that each constraint clause takes in 2
variables as input. Clauses in Max-DiCur take on the form (z; A —z;) for some choices of i # j € [n]
where z;, 2; € {0, 1} are the labels of the tail and head vertices, respectively, of an edge in a directed graph G.
Max-DiCur is a special case of Max-2EAND, which is a Max-2CSP such that all its clauses are of the form
(ci A cj) where ¢; € {x;,~x;}, ¢j € {x;, ~x;} for some i # j. We will show a reduction from a one-way
communication problem with a known communication lower bound called Distributional Boolean Hidden
Partition (DBHP) to Max-2EAND in the streaming setting. This reduction implies that Max-2EAND, and
also Max-DiCur, have a streaming space lower bound for achieving a 4 /9-approximation.

Definition 4.1 (DBHP). Let n € N, € (0,1/16) be parameters. G ~ G(n,23/n) is an Erdds-Rényi
random graph (with n vertices and where each potential edge is independently included w.p. 2(3/n). Let
X* € {0,1}"™ be a n-bit vector sampled uniformly at random. Let r be the number of edges in G, and
M € {0,1}"*"™ be the edge-vertex incidence matrix of G. The two players, Alice and Bob, are given the
following inputs:

* Alice receives the randomly chosen vector X* € {0,1}".

* Bob receives the edge-vertex incidence matrix M and a vector w € {0,1}", and is promised that w
is sampled from one of two possible distributions with equal probability. Either w = M X™* (YES
distribution) or w = 1 + M X™ (NO distribution) where 1 € %, is the all-ones vector.

Alice is allowed to send a message m to Bob, where the complexity of the communication protocol is the
length of the message, |m|. The goal of the players is for Bob to distinguish between the YES and NO
distributions. The success probability is formally defined as

P

Bob YES]/2 Pr [Bob NO|/2.
wN}gES[ob says YES]/ +w~1{10[ob says NO|/

There is a one-way communication complexity lower bound for the DBHP problem which we will state
without proof.

Lemma 4.2 (Lemma 4.4 of [CGV21], based on Lemma 5.1 of [KKS14]). Let 3 € (n='/1° 1/16) and
s € (n_l/lo, 1) be parameters. Any protocol for DBHP that has |m| < s\/n bits of communication cannot
distinguish between the YES and NO distributions with success probability more than 1/2 + ¢ - (53/ 215s)
Jfor some constant ¢ > 0 and sufficiently large n.

Reduction from DBHP to Max-2EAND. The graph G in the definition of DBHP will be very sparse, so
to make it more amenable to performing a reduction we first densify it by a factor 7. Alice still samples a
single X* € {0,1}", but Bob is now given T instances of (M;, w;) for 1 < i < T, each sampled i.i.d. from
either the YES or NO distributions (all 7" pairs are sampled from the same distribution). The goal is the
same, for Bob to distinguish between the two cases, using some communication bits from Alice.

The reduction is defined by two algorithms, .4 and B, to be specified. Alice runs .A on X* and outputs a
set of Max-2EAND clauses. Bob runs B on each of his (1, w;)s and outputs 7" sets of Max-2EAND clauses.
The overall Max-2EAND instance is the union of all the clauses, A(X™*) U B(M;y,w1) U -+ - U B(Mp,wr).
This reduction from .4 and B induces two different distributions of MAX-2EAND instances, DY and DV,
corresponding to the underlying YES and NO distributions respectively. For some values v* and v?, if

Pr [Max-2EAND(¥) > vY] =1—o0(1)and Pr [Max-2EAND(¥) < v™¥] =1 —0(1),
U~DY W~DN

then if there were an a-approximation algorithm for Max-2EAND for o« > 2—5, then this approximation
algorithm could be used to distinguish instances of Max-2EAND sampled from DY from instances of
Max-2EAND sampled from DY, thus enabling a way to distinguish between the YES and NO distributions.

Remark 4.3. A streaming algorithm for distinguishing DY and DV that uses S bits of space can be turned
into a one-way communication protocol for DBHP that uses S bits of communication.

Under the adversarial-order streaming model, a streaming algorithm is promised to work on any ordering of
stream elements. We will use this by having the stream start with the clauses in A(X™*). Alice could compute
A(X*) from her input X* and simulate the streaming algorithm on it. Since the streaming algorithm uses
only S bits of space, Alice will have an S-bit memory state that she can send to Bob as the message m. Bob

then continues the simulation of the streaming algorithm on the clauses B(Mj,w;) U - - - U B(Mr,wr) he
computes based on his input, using the S-bit memory state received from Alice as the starting memory. At
the end, since the streaming algorithm distinguishes between DY and DY, then Bob is able to distinguish
between YES and NO.

Here are the definitions of algorithms .4 and B. Let ¢ > 0 be the constant from Lemma 4.2. For ¢ > 0, let

T = (10000/2)3 - (10c)? and 8 = W so that 3T = 10000/2.

+ A(X*): Sample SnT /4 independent pairs (i,j) € X* x X*, and for each pair include the clause
(x; A —zj) in the set of clauses A(X*).

* For each B(M;,w;): Let r be the number of rows in M;. For each 1 <[< r such that (w;); = 1, let
the two 1s in the /th row of M; be in the jth and kth positions. Include the clauses (z; A —x) and
(x A —z;) in the set of clauses B(M;, w;).

Lemma 4.4. For any ¢ € (0,1), let DY and DV be defined in terms of the 3, T, A, B as above. For a
Max-2EAND instance V, let my denote the number of clauses in V. Then

\I,E%Y[MAX_ZEAND(\P) >(3/5—¢)-my]=1-0(1)

and
PrN[MAx-2EAND(‘II) < (4/15+¢€) -mg] =1—-o0o(1).
U~D
A direct consequence of this lemma is that v = (4/15 + ¢) - my and v¥ = (3/5 — ¢) - my, s0 a-

approximating Max-2EAND for any o > 43/ /155:;5 > 4/9 implies the ability to distinguish YES and NO.

Proof Sketch.

* Suppose we are in the YES distribution/DY . Tt suffices to show the existence of an assignment which
will w.h.p. satisfy a 3/5 fraction of clauses.

Consider the assignment 0 = X* € {0,1}" to the variables of W, exactly using Alice’s input X*.
Every single clause (z; A —z;) generated by A(X*) will be satisfied by o because (i, j) € X* x X*
definitionally. This contributes SnT/4 satisfied clauses. Furthermore, for every pair of clauses
(xj A —x) and (x A —xj) generated by B, exactly one of them will be satisfied by o because
of the way these clauses are constructed for each entry of w that equals 1, which occurs when
wy = (MX*); = (X*); + (X*)r = 1 when j and k are defined as the positions of the two 1s in the
[th row of M.

The amount contributed by B turns out to be the number of entries over all w; equal to 1, which will
turn out to be closely concentrated around a value of B"TT Therefore, with high probability, o satisfies
around % + % =30 ZT clauses out of a total of around % + pnT = % clauses (both closely
concentrated around these values). Hence, w.h.p. the fraction of clauses satisfied by 0 = X™* will be

greater than (3/5 — ¢).

* Suppose we are in the NO distribution/D” . In this case we have to show that w.h.p. none of the
assignments satisfy more than a 4/15 fraction of clauses.

Let X* € {0,1}" define a hidden partition of the vertices. The key intuition is that in the NO/D™
case, two clauses are added by Biff (w;), = 1, which occurs only if (X*); = (X*)j, i.e. when z; and
x, are on the same side of the hidden partition. The clauses are of the form (x; A —~xy) and (2 A —z;).

Thus clauses from B reward assignments o € {0, 1}" such that o; # o} whenever (X*); = (X*)y,
i.e. maximizing cutting edges that don’t cross the hidden partition. Meanwhile, clauses from .4 only
rewards assignments o that assign many vertices in X* to 1 and many vertices in X* to 0 (so as to
satisfy many sampled (z; A —z;) with (i,7) € X* x X*), i.e. maximizing cutting edges that cross
the hidden partition.

Another way this can be viewed is that B-clauses incentive o being different from X *, while .A-clauses

incentive o being similar to X *. These two objectives compete with one another. One can make this
quantitative by parameterizing o by its overlaps

= Pr |o; =1], = P i =0].
p=Prloi=1], q¢ j@g*[%]

Then, it is possible to show that the expected contribution of A scales like pq - (SnT'/4), while the
expected number of marked edges cut within the sides of the hidden partition scales like

(p(1 —p) +q(1 —q)) - (BnT/2),

because inside X™* you cut a random within-edge with probability ~ 2p(1 — p), and similarly inside
X*. Since the number of clauses still is around (5/4)6nT, this yields a rough upper bound on the
fraction of satisfied clauses of the form

g+ 2p(1 —p) +2q(1 —q)
- .

Maximizing over p,q € [0, 1] shows this expression is maximized at p = ¢ = 2/3 with value 4/15.
Hence, w.h.p. over U ~ DV no assignment achieves more than a (4/15 + ¢) fraction of clauses.

S Construction of a Quantum Streaming Algorithm

Theorem 5.1 ([KPV23], Theorem 1). There is a quantum streaming algorithm which 0.483-approximates
the Max-DiCur value of an input graph G with probability 1 — §. The algorithm uses O(log5 nlog %) qubits
of space.

The quantum streaming algorithm of [KPV23] relies on the same fundamental idea as that of the classical
streaming algorithm of [Sax+23b]: they approximate the maximum directed cut by estimating the snapshot
of the graph. The novel contribution that they provide is a way of estimating the snapshot (or rather, a
suitable approximation to it called a pseudosnapshot) in only polylog(n) quantum space compared to the
O(\/ﬁ) classical space of the original using a primitive called the quantum pair sketch.

We break the construction of an algorithm for approximating Max-D1Cur into several stages which build
on top of one another. First, we describe the quantum pair sketch, an inherently quantum primitive. We give
an example application of the base quantum pair sketch for the Boolean Hidden Matching problem. We then
construct a new primitive called a heavy edge counter from the quantum pair sketch interface. Following
this, we give an idea of how to use the heavy edge counter to estimate the pseudosnapshot of a graph stream.

5.1 Quantum Pair Sketch

We briefly describe the functionality of the quantum pair sketch, treating it as a black box which can be used
without knowing its implementation. The implementation details of the sketch require some knowledge of
quantum computing, which we give only a high-level picture of for the sake of flow and keeping prerequisites
minimal. A more formal exposition on the implementation can be found in section 3 of [KPV24].

The quantum pair sketch Q7 summarizes a set T C {0, 1} of up to L = 2 elements using [= log L
qubits of quantum memory. The benefit of an exponential reduction in space requirements for quantumly
storing the set 7' compared to the naive classical approach comes at the cost of it being probabilistically
queried. It has the following operations:

» create(7): instantiates the sketch Qr from a set T C {0, 1}'.

« update(w, Qr): For an input permutation 7 : {0,1}} — {0, 1}, transforms Qp +> Qr(1) where
m(T) ={n(z):xz €T}

* query-one(z, Qr): probabilistically checks whether « € T or not by returning 1 or 0 respectively.
If x € T, then

— w.p. 1/|T| returns 1 and destroys the sketch (meaning the sketch cannot be used anymore after
this).
— w.p. 1 — 1/|T| returns 0 and replaces Q7 with Q7 (5.

If z ¢ T, always returns 0 (Qr is unaltered).
Note: Getting 1 implies that x € T, while getting 0 could mean x was or was not originally in T', but
going forward T has been updated so that z is for certain not there.

* query-pair(x,y, Qr): probabilistically checks whether {z,y} C T. Has possible return values of
+1, -1, and 0.
If {x,y} C T, then

— w.p. 2/|T| returns +1 and destroys the sketch.
— w.p. 1 — 2/|T| returns 0 and replaces Q7 with O\ ¢, 1

If 2 € T ory € T but NOT both (|{z,y} NT| = 1), then

- w.p. 1/|T| returns +1 or —1 at random with equal probability (each has probability 1/(2|1°|))
and destroys the sketch.

- w.p. 1 — 1/|T| returns 0 and replaces Q7 with O\ ¢, 1

If v ¢ T and y ¢ T, always returns 0 (Qr is unaltered).

Note: When {z,y} C T, E[query-pair({z,y}, Qr)] = 2/|T|. In the other cases, when {z,y} Z
T, E[query-pair({z,y}, Qr)] = 0. This provides a means of querying the presence of a pair by
maintaining k copies of the sketch in parallel for sufficiently large k& and looking at the average of the
outcomes.

Many features of the quantum pair sketch are forced by the underlying quantum mechanical implementation.
For instance, the update operation comes in the form of a permutation because all non-measurement
operations on the underlying quantum state must be reversible, in the sense that knowing the operation and
the output, there is a uniquely specified input. The property of destroying the sketch or removing the element
we wanted to check for most of the time after a query is inconvenient, but is a necessary consequence
of performing the underlying quantum measurement, which according to the laws of quantum mechanics
collapses the original state storing a (potentially exponentially large) set to a state storing a smaller set that
is consistent with the outcome observed.

The utility of “quantumness” over classical randomness in this sketch arises in the query-pair operation
in the case where {x,y} C 7. In that case, the —1 outcome never occurs due to destructive interference,
while the +1 outcome occurs with higher probability due to constructive interference. This feature is the
key advantage quantum pair sketch has over a randomized classical sketch, and we will see how it used to
obtain an exponential quantum space advantage in the next section.

5.2 Toy Problem: Boolean Hidden Matching

To build intuition for the quantum pair sketch, we first apply it to the Boolean Hidden Matching problem.
This example isolates the core principles that yield an exponential separation in space complexity between
quantum and classical methods. The Boolean Hidden Matching streaming problem is defined as follows:
For a set of n vertices v € [n], each has a label x,, € {0, 1}. There is also a partial matching M C [n] x [n]
where |M| = an for 0 < a < 1/2 on the n vertices such that each vertex appears in at most one pair
(u,v) € M and pairs are between distinct vertices u # v. Each pair (u,v) € M has a label z,, € {0,1}. It
is promised that one of two conditions holds:

1. Forevery (u,v) € M, xy ® Ty = Zyy, OF
2. Forevery (u,v) € M, xy ® x4y # Zyp-

The algorithm receives a stream of vertex-label pairs (v, z,) and matching-label pairs ((u,v), zuy), Where
the two types of updates are intermingled in any order. By the end of the stream, all vertices should have
appeared in the stream alongside their = label once, and all vertex pairs in M should have appeared in the
stream alongside their z label once. The goal is to decide by the end of the stream which condition is true.

Classical Streaming Hardness. Without remembering at least one complete set of x,,, x,, and z,,, a clas-
sical algorithm can do no better than succeeding 1/2 of the time by guessing the correct condition randomly.
The optimal classical strategy for the Boolean Hidden Matching streaming problem is essentially to save
some random choice of x or z labels and hope to “get lucky” in seeing the corresponding z or x labels,
respectively, later on in the stream to obtain at least one complete set of x,, x,, and z,,. However, in a
stream of O(n) updates, you would need to save a non-trivial amount of labels to have a high probability of
getting lucky. Specifically, the birthday paradox phenomenon tells us that you would need to save (/n)
items to have a constant probability of seeing at least one complete set of x,,, x,, and z,, labels. Indeed,
this problem is classically hard to decide with high probability in the streaming model unless the algorithm
is allowed to use 2(y/n) memory. The full proof of this uses Fourier-analytic techniques to show the lower
bound rigorously.

Quantum Streaming Algorithm. First, the algorithm initializes the quantum pair sketch with a set
T = {(u,0) | u € [n]}

by calling create(7"). Each element of 7" can be written with [= [logn| + 1 bits, so I = [logn| + 1 qubits
are required for the sketch. Each element of T" has two labels: the first corresponds to a choice of vertex
u and the second label to a vertex label z,, which is initially set to 0, but will be updated as the algorithm
receives elements from the stream. For the two different kinds of stream updates, here is how the algorithm
responds:

* Updates of the form (v,z,): Let v’ be the vertex seen in this update and x,, be the label seen. If
z,» = 0, do nothing. If x,» = 1, then consider the permutation m,» which maps

- (v,0)— (v, 1)
- (V1) — (v, 0)

while mapping every other element to itself. The second mapping is necessary to preserve bijectivity
of the permutation, though it is not actually used for anything. The algorithm calls update (7, , Or),
which is used to update the label of v" in T" from 0 to 1.

10

* Updates of the form ((u,v), 24y): When getting an update like this, the algorithm tries to recover the
labels of u and v. It picks two bits a,b € {0,1} independently and uniformly at random as vertex
label guesses and calls

query-pair((u, a), (v,b), Qr).

If this call returns +1, we classically save the values of a and b used in the call returning +1 (i.e. if
query-pair((u,0), (v,1), Qr) returns +1 then it saves 0 and 1) as well as the label z,,,, revealed during
the update. If the call returns —1, return L and abort the algorithm. If it returns O then do nothing and
continue with the next stream update. Note that when +1 is returned the sketch is destroyed so it is no
longer useful beyond that point.

Let us analyze the ((u,v), zyy) update further. Whatever the current state of Q7 may be, exactly one of
the four possible query-pair calls of the form query-pair(z, y, Qr) will have {z,y} C T, two will have
{x,y} NT| = 1, and one will have x,y ¢ T. For the {z,y} C T query, +1 is returned with probability
2/|T|, for the two |{z,y} NT| = 1 queries, +1 is returned with probability 1/(2|T"|) each, and for the
x,y ¢ T query, +1 is returned with probability 0.

What is the probability that a query-pair call which returned +1 had vertex label guesses a, b which are
the same as the current labels of u and v stored in the quantum sketch (', currs To curr), SUch that a = xy curr
and b = x, curr? Let ¢ be the event that @ = x4 curr and b = x curr for the a and b chosen, and let 4-1 be the
event that the query-pair call using ¢ and b as the vertex label guesses returned +1. By Bayes’ rule

IS,

Pr[+1|c]-Pr[c] T
I A
Note that if either of the (u, x,,) or (v, z,) updates did not arrive before the ((u, v), zy,) update, the current
vertex labels xy curr, Ty curr may not reflect the true vertex labels x,,, z,. However, correcting for this can
be handled by classically updating the saved value of ', curr OF Zy curr 1f these updates are seen later in the
stream. For example: suppose that after seeing update ((u,v), 2y, = 1), getting a return value of +1, and
saving Ty curr = 0, Ty curr = 0, 24y = 1, an update (v, 1) arrives. The algorithm would then classically set
Zy,curr = 1. If another update (u, 1) arrives, the algorithm would classically set z, curr = 1. Finally, it sets
Ty i= Tycurr AN Ty, 1= Ty curr at the end of the stream after all updates have been processed.
At the end of the stream, if values z,,, ,, and z,,, have been classically saved, then we check whether
Ty D Ty = Zyy OF Ty B Xy F 2y and report which one is true. If no values were saved, then return L.
Recall that | M| = an. The probability of any given update of the form ((u, v), zy,) returning +1is ©(1/n),
and there are ©(an) many updates of this form, so with ©(«) probability the algorithm will report a non-_L
answer, that will be correct 2/3 of the time. By repeating this sketch @(é) times in parallel and taking a
majority vote of the decision for the outputs that are not |, the algorithm will output the correct answer
> 2/3 of the time. Each sketch requires O(log n) quantum space, so the overall quantum space complexity
is O(é log n), achieving an exponential space advantage against the Q(/n) classical lower bound.

Pric|+1] =

=2/3.

5.3 Constructing a Heavy Edge Counter from Quantum Pair Sketch

We will construct a new primitive out of quantum pair sketch called a heavy edge counter. Suppose that
for a directed graph G = (V, E), the input arrives as a stream of directed edges uv in G. We show how to
construct a quantum streaming algorithm that counts heavy edges in (G. More specifically, let d§“7’ be the
number of edges incident to v that arrived before 4 in a stream (and analogously for d;“dq’). For some € > 0
and constants dy,, d;, the goal of the Heavy Edges problem is to estimate from the graph stream the number
of edges uv € E within £em of the true value such that

d=" > dj, and d=% > d.

11

Quantum Streaming Algorithm. First, the algorithm initializes a quantum pair sketch with the set
T ={(i,s) | i € [4m]}

where {s, h, t} are labels indicating “scratch”, “head”, and “tail” respectively by calling create(T).

Permutation Construction. For the i-th directed edge v that arrives in the stream, we utilize four unique
scratch states from T, denoted szu, s;u, sﬁv, Sf,v’ which are equal to elements (4i — 3,s), (4i — 2,5),
(41 — 1,s), (44, s) respectively. We construct the permutation 7; ., as a product of four disjoint cycles.
For each (w, q) € {(u, h), (u,t), (v, h), (v,t)}, the permutation cycles the scratch state through the counter
states (w, 7, q) for j € {0,...,d,}:

T uv + S;‘I,w = (wa07Q) = (w>1’q) = .. = (wvqu) = Sgﬂu'

This implements a modular increment of the counter for w with respect to the label ¢, using the scratch state
to expand the cycle length. All other states remain fixed. This permutation is applied to the quantum pair
sketch by calling update(r; ,,,,, Q7) when the ith directed edge v arrives.

Immediately after the update call, the algorithm calls
query-pair((u, dp, h), (v,dy, t), Or).

If this returns +1, terminate the algorithm and return +2m, depending on which value of +1 was returned
by query-pair. If it returns 0, then continue taking in stream updates, unless this is the last item, in which
case the algorithm returns 0.

Analysis. Observe that (u, dp,, h) and (v, dy, t) are present in the set T exactly when at least dj, and d; edges
adjacent to u and v, respectively, have arrived in the stream prior to 4© by maintaining a “stack” of counters
that accumulates up to dj, or d;. Each time an edge adjacent to a vertex w arrives, it increments all the
counters of the form (u, ¢, q) fori € {0,...,d,} and ¢ € {h,t}. If query-pair returns 0, then (u, dj, h) and
(v,dy,t) are removed from T" (or possibly they were never there to begin with). However, for the next edge
that arrives incident on u or v, its update call will shift the stack back up again so that (u, dy,, h) or (v, dy, t)
is in 7" again since the elements (u,dy — 1, h) or (v,d; — 1,t) were present in the stack and upon the new
update call get shifted back up.

If dgu”v > dp, and d%“% > d;, then the expected value of each call to query-pair is % = ﬁ but other-
wise the expected value of query-pair is 0. Using linearity of expectation, the final expected value of the
algorithm is the sum of the expected contributions of each edge v such that d=%" > dj, and d="" > d;
(Note: the analysis is a little bit more complicated, as when elements are removed from 7' it boosts the
probability of encountering the true element, but this increase cancels out exactly with the decrease in e.v.
due to the probability of the quantum sketch being destroyed before it processes a stream update). Each
edge meeting the criteria d=%? > dj, and d="" > d; adds ﬁ to the total expected value. By multiplying the
algorithm’s output by 2m, we obtain a noisy estimator for the number of edges u® in the stream such that
d=% > dy, and d=¥" > d;. We can obtain a +em estimate of the quantity desired with high probability by
running many parallel copies of quantum pair sketch and averaging their results to reduce the variance.

Space Complexity. How many parallel copies of quantum pair sketch need to be run to get an estimate
within +em with high probability? The output of one sketch takes on a value X € {—2m,0,2m}, so
Var[X] < E[X?] < 4m? = O(m?). By Chebyshev’s inequality, to stay within -em of the true value with
probability > 2/3 requires using the average of @(8%) copies of the quantum pair sketch. Therefore the
overall quantum space complexity required for the Heavy Edges problem is O(Ei2 logn).

12

5.4 Constructing a (pseudo)snapshot estimator from Heavy Edge Counter

We are finally in a position to give a high-level picture of how to quantumly estimate a pseudosnapshot,
which can then be used to approximate Max-DiCuTt(() via the techniques developed in sections 2 and 3.

Degree Range Count Estimator. Suppose that instead of counting heavy edges, we wanted to count edges
ub whose endpoint degrees were within specific ranges, or that d="V € [dp,, d}) and d5 € [dy, d}). This
can be achieved by maintaining four separate heavy edge counters that serve as estimators for the following
values:

1. A:=|{ub € E : ds" > dj and d="™ > d;}|
2. B:= |{uv € E:dg™ > d) and d5" > d;}|
3. C:=|{uv € E:ds" > dj and d=% > d}}|
4. D := |{ub € E:d3" > d) and ds™ > d}}|

The true number of edges 1t such that dz% € [dy,, d),) and d5"V € [dy, d}) willbe A — B — C + D by an
inclusion-exclusion argument. This is because when we subtract B (edges with d%“qv > d}) and C' (edges
with 5 > d}) from A, the edges counted in D (those satisfying both d% > d} and d5" > d}) have
been subtracted twice, so D must be added back to correct for the double subtraction.

Generalizing from degrees to biases. We would like to estimate the count of edges in a bias class
[by, b)) x [be, b)) rather than a degree class [dy,d)) x [d¢,d}) in order to actually estimate the snapshot.
Recall that the bias of a vertex is defined as its outdegree divided by its degree. We could in principle make
a small modification to the heavy edge counter to check for outdegree instead of degree: for an arriving
edge ub, have it only increment the two permutation cycles with elements of the form (u, 7, h) and (u,,t)
instead of all four. However, we need to estimate the outdegree and degree simultaneously to estimate the bias.

A naive approach that explicitly maintains two independent counters per vertex (one for outdegree, one for
degree) would require keeping a Cartesian product collection of counter states, which would significantly
increase the size of the underlying set T' and thereby decrease the success probability of the quantum queries.
Instead, we probabilistically encode outdegree information into the higher-order bits of the same counter
that tracks degree.

Note that we do not need to know (d"*, d,,) exactly to obtain something close to the bias. For technical
reasons, [KPV23] adds random noise to the counts to smooth out the estimates, so that they are estimating a
different, but closely related value called the pseudobias. We only need enough information to decide which
pseudobias interval [t;, t;11) the endpoint falls into at the moment an edge arrives for a constant number of
pseudobias intervals defined by thresholds 0 < ¢; < --- < ?; < --- < 1. For bias estimation, the trick is
to treat outdegree only through a coarse, randomized encoding: whenever an out-edge of u is observed, the
algorithm performs a “jump” of size k in the same counter with probability 1/k (for an appropriate parameter
k), so that the expected contribution of the jumps is proportional to d5"* while keeping the counter’s state
space small. Intuitively, this turns the counter value into

(degree) + k - (a sampled proxy for outdegree),

implemented inside one register rather than as an explicit pair of counters.

13

Once outdegree is encoded via these rare k-jumps, the algorithm checks outdegree thresholds by probing the
stack at multiple offsets: instead of only querying at dj,, it queries at positions dy,, dy, + k, dp + 2k, ... (and
similarly on the tail side), where the offset index corresponds to the relevant pseudobias interval. As in the
degree-only setting, the algorithm does not estimate a bias class directly, but instead runs a constant number of
heavy edge counters at appropriately chosen offset pairs and combines their outputs by inclusion—exclusion.
Each such heavy edge counter tests whether an edge’s endpoints simultaneously exceed the required degree
threshold and the required outdegree proxy threshold. By aggregating these estimates, the algorithm obtains
an unbiased estimate for the number of edges whose endpoints lie in the specified pseudobias class.

Estimating all pseudobias classes. The discussion above explains how to estimate a single pseudosnapshot
entry in O(logn) space, corresponding to one fixed pair of head/tail degree ranges and one fixed pair
of head/tail pseudobias thresholds. To approximate Max-DiCuT, however, the algorithm must estimate the
pseudosnapshot over all relevant parameter combinations. There are only O(1) bias intervals [t;, t;11) needed
by the final approximation algorithm, but the pseudosnapshot estimator of [KPV23; KPV24] internally refines
these intervals using a discretization parameter x = C:)(log n). Concretely, within each degree-range pair
(o, B), the estimator performs queries indexed by (i, j) € [x]?, corresponding to k2 possible offset pairs
used to probe different pseudobias thresholds. The other source of polylogarithmic overhead comes from

the degree discretization. The algorithm partitions degrees into

1
L = |logi sn|+1 = G)< 0;”)

multiplicative ranges, and it estimates the pseudosnapshot separately for each ordered pair of head/tail degree
ranges, yielding L? = O(log? n) degree-scale subproblems. For each such subproblem indexed by (e, 3)
and each of the x? pseudobias index pairs, a single quantum pair sketch instance provides an unbiased
but high-variance estimator. The algorithm therefore runs O(l /) independent copies per entry (with an
additional log(1/9) factor for high success probability) and aggregates them using standard concentration
techniques. Overall, the total quantum space in terms of n is

O(logn) x O(L?) x O(k?) = O(log®n),

which matches the space bound stated in Theorem 1 of [KPV23].

References

[CGV21] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal Streaming Approxi-
mations for all Boolean Max-2CSPs and Max-kSAT. 2021. arXiv: 2004.11796 [cs.CC]. URL:
https://arxiv.org/abs/2004.11796.

[FJ10] Uriel Feige and Shlomo Jozeph. Oblivious Algorithms for the Maximum Directed Cut Problem.
2010. arXiv: 1010.0406 [cs.DS]. urL: https://arxiv.org/abs/1010.0406.

[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming Lower Bounds for Approx-
imating MAX-CUT. 2014. arXiv: 1409.2138 [cs.DS]. urL: https://arxiv.org/abs/
1409.2138.

[KPV23] John Kallaugher, Ojas Parekh, and Nadezhda Voronova. Exponential Quantum Space Advantage
Jor Approximating Maximum Directed Cut in the Streaming Model. 2023. arXiv: 2311.14123
[quant-ph]. urL: https://arxiv.org/abs/2311.14123.

14

[KPV24]

[Sax+23a]

[Sax+23b]

John Kallaugher, Ojas Parekh, and Nadezhda Voronova. How fo Design a Quantum Streaming
Algorithm Without Knowing Anything About Quantum Computing. 2024. arXiv: 2410. 18922
[quant-ph]. urL: https://arxiv.org/abs/2410.18922.

Raghuvansh R Saxena et al. “Streaming complexity of CSPs with randomly ordered constraints”.
In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM. 2023, pp. 4083—4103.

Raghuvansh R. Saxena et al. “Improved Streaming Algorithms for Maximum Directed Cut via
Smoothed Snapshots”. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS). 2023, pp. 855-870. por1: 10.1109/F0CS57990.2023.00055.

15

